In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the volume of fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal, and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet, and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.

References

References
1.
Schuöcker
,
D.
,
1986
, “
Dynamic Phenomena in Laser Cutting and Cut Quality
,”
J. Appl. Phys., B
40
(
1
), pp.
9
14
.
2.
Schuöcker
,
D.
, and
Muller
,
P.
,
1987
, “
High Power Lasers
,”
Proc. SPIE
,
801
, pp.
258
264
.
3.
Schulz
,
W.
,
Simon
,
G.
,
Urbassek
,
H. M.
, and
Decker
,
I.
,
1987
, “
On Laser Fusion Cutting of Metals
,”
J. Phys. D: Appl. Phys.
,
20
, pp.
481
488
.
4.
Schulz
,
W.
, and
Becker
,
D.
,
1989
, “
Mathematical Simulation of Laser Treatment Materials
,”
European Scientific Laser Workshop on Mathematical Simulation (Lisbon)
, pp.
178
200
.
5.
Vicanek
,
M.
,
Simon
,
G.
,
Urbassek
,
H. M.
, and
Decker
,
I.
,
1987
, “
Hydrodynamical Instability of Melt Flow in Laser Cutting
,”
J. Phys. D: Appl. Phys.
,
20
(
1
), pp.
140
145
.
6.
Petring
,
D.
,
Abels
,
P.
, and
Beyer
,
E.
,
1988
,“
Absorption Distribution on Idealized Cutting Front Geometries and Its Significance for Laser Beam Cutting
,”
Proc. SPIE.
,
1020
, pp.
123
131
.
7.
Tani
,
G.
,
Tomesani
,
L.
, and
Campana
,
G.
,
2003
, “
Prediction of Melt Geometry in Laser Cutting
,”
Appl. Surf. Sci.
,
208–209
, pp.
142
147
.
8.
Yilbas
,
B. S.
,
1997
, “
A Study Into Laser Cutting Process
,”
Heat Mass Transfer
,
32
(
3
), pp.
175
180
.
9.
Kaplan
,
A. F. H.
,
1996
, “
An Analytical Model of Metal Cutting With a Laser Beam
,”
J. Appl. Phys.
,
79
(
5
), pp.
2198–
2208
.
10.
Gross
,
M. S.
,
2006
, “
On Gas Dynamic Effects in the Modeling of Laser Cutting Processes
,”
Appl. Math. Model.
,
30
(
4
), pp.
307
318
.
11.
Kovalev
,
O. B.
,
Orishich
,
A. M.
,
Fomin
,
V. M.
, and
Shulyat'ev
,
V. B.
,
2001
, “
Adjoint Problems of Mechanics of Continuous Media in Gas-Laser Cutting of Metals
,”
J. Appl. Tech. Phys.
,
42
(
6
), pp.
1014
1022
.
12.
Gross
,
M. S.
,
Black
,
I.
, and
Muller
,
W. H.
,
2003
, “
Computer Simulation of the Processing of Engineering Materials With Lasers-Theory and First Applications
,”
J. Phys. D: Appl. Phys.
,
36
, pp.
307
318
.
13.
Hu
,
J.
,
Qiu
,
X.
,
Zhang
,
Z.
, and
Shen
,
H.
,
2012
, “
Influence of Oxidation on Flow Structure in Laser-Oxygen Cutting
,”
J. Appl. Phys.
,
112
, p.
063107
.
14.
Otto
,
A.
, and
Schmidt
,
M.
,
2010
, “
Towards a Universal Numerical Simulation Model for Laser Material Processing
,”
Phys. Procedia
5
(
1
), pp.
35
46
.
15.
Kohl
,
S.
, and
Schmidt
,
M.
,
2013
,”
Numerical Analysis of the Influence of Beam Characteristics Into the Process Dynamics During Laser Cutting
,”
Proceedings of ICALEO
, pp.
104
109
.
16.
Chen
,
K.
,
Yao
,
Y. L.
, and
Modi
,
V.
,
1999
, “
Numerical Simulation of Oxidation Effects in the Laser Cutting Process
,”
Int. J. Adv. Manuf. Tech.
,
15
(
11
), pp.
835
842
.
17.
Powell
,
J.
,
Petring
,
D.
, and
Kumar
,
R. V.
,
2009
, “
Laser–Oxygen Cutting of Mild Steel: The Thermodynamics of the Oxidation Reaction
,”
J. Phys. D: Appl. Phys.
42
, pp.
1
11
.
18.
Modest
,
M. F.
, and
Abakians
,
H.
,
1986
, “
Evaporative Cutting of a Semi-Infinite Body With a Moving CW Laser
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
602
607
.
19.
Chen
,
K.
, and
Yao
,
Y. L.
,
1999
, “
Striation Formation and Melt Removal in the Laser Cutting Process
,”
J. Manuf. Process.
1.1
, pp.
47
53
.
20.
Arata
,
Y.
,
Maruo
,
H.
,
Miyamoto
,
I.
, and
Takeuchi
,
S.
,
1979
, “
Dynamic Behavior in Laser Gas Cutting of Mild Steel
,”
Trans. JWRI
,
8
(
2
), pp.
15
26
.
21.
Ivarson
,
A.
,
Powell
,
J.
,
Kamalu
,
J.
, and
Magnusson
,
C.
,
1994
, “
The Oxidation Dynamics of Laser Cutting of Mild Steel and the Generation of Striations on the Cut Edge
,”
J. Mater. Process. Technol.
,
40
(3–4), pp.
359
374
.
22.
Chen
,
K.
,
Yao
,
Y. L.
, and
Modi
,
V.
,
2000
, “
Gas Jet–Workpiece Interactions in Laser Machining
,”
ASME J. Manuf. Sci. Eng.
122
(
3
), pp.
429
438
.
23.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1987
, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I Model Formulation
,”
Int. J. Heat Mass Transfer
,
30
(
10
), pp.
2161
2170
.
24.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
39
(
1
). pp.
201
225
.
25.
Butler
,
K. M.
,
Ohlemiller
,
T. J.
, and
Linteris
,
G. T.
,
2004
, “
Progress Report on Numerical Modeling of Experimental Polymer Melt Flow Behavior
,”
International Interflam Conference
, Vol.
2
, pp.
937
948
.
26.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed-Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(8), pp.
1709
1719
.
27.
Kim
,
C. H.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2003
, “
Modeling of Temperature Field and Solidified Surface Profile During Gas-Metal Arc Fillet Welding
,”
J. Appl. Phys.
,
94
(
4
), pp.
2667
2679
.
28.
Kovalev
,
O. B.
, and
Orishich
,
A. M.
,
2004
, “
Theory of Metal Surface Destruction Under the Action of Laser Radiation
,”
Doklady Phys.
,
49
(
3
), pp.
175
178
.
29.
Kovalev
,
O. B.
, and
Zaitsev
,
A. V.
,
2005
, “
Modeling of the Free-Surface Shape in Laser Cutting of Metals. 2. Model of Multiple Reflection and Absorption of Radiation
,”
ASME J. Appl. Mech. Tech. Phys.
,
46
(
1
), pp.
9
13
.
30.
Ahmadi
,
B.
,
Torkamany
,
M. J.
,
Jaleh
,
B.
, and
Sabaghzadeh
,
J.
,
2009
, “
Theoretical Comparison of Oxygen Assisted Cutting by CO2 and Yb:YAG Fiber Lasers
,”
Chin. J. Phys.
,
47
(
4
), pp.
465
475
.
31.
Zaitsev
,
A. V.
,
Kovalev
,
O. B.
,
Orishich
,
A. M.
, and
Fomin
,
V. M.
,
2005
, “
Numerical Analysis of the Effect of the TEM00 Radiation Mode Polarization on the Cut Shape in Laser Cutting of Thick Metal Sheets
,”
Quantum Electron.
,
35
(
2
), pp.
200
204
.
32.
Steen
,
M.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
4th ed.
Springer
,
London
.
33.
fluent 6.3
, User's Guide,
2006
, Fluent, Inc.
34.
Petring
,
D.
,
1994
, “
Anwendungsorientierte Modellierung desLaserstrahl-schneidens zur rechnergestützten Prozeßoptimierung
,” Ph.D. thesis, RWTH Aachen, Germany, Shaker Verlag.
35.
Beyer
,
E.
,
1995
,
Schweißenmit Laser
,
Springer
,
Berlin
.
36.
Mahrle
,
A.
, and
Beyer
,
E.
,
2009
, “
Theoretical Aspects of Fibre Laser Cutting
,”
J. Phys. D, Appl. Phys.
,
42
(
17
), p.
175507
.
You do not currently have access to this content.