In this work, the coupled lattice Boltzmann and direct collocation meshless (LB–DCM) method is introduced to solve the natural convection in the presence of volumetric radiation in irregular geometries. LB–DCM is a hybrid approach based on a common multiscale Boltzmann-type model. Separate particle distribution functions with multirelaxation time (MRT) and lattice Bhatnagar–Gross–Krook (LBGK) models are used to calculate the flow field and the thermal field, respectively. The radiation transfer equation is computed using the meshless method with moving least-squares (MLS) approximation. The LB–DCM code is first validated by the case of coupled convection–radiation flows in a square cavity. Comparisons show that this combined method is accurate and efficient. Then, the coupled convective and radiative heat transfer in two complex geometries are simulated at various parameters, such as eccentricity, Rayleigh number, and convection–radiation parameter. Numerical results show that the LB–DCM combination is a potential technique for the multifield coupling models, especially with the curved boundary.

References

References
1.
Viskanta
,
R.
,
1998
, “
Overview of Convection and Radiation in High Temperature Gas Flows
,”
Int. J. Eng. Sci.
,
36
(
12–14
), pp.
1677
1699
.
2.
Larson
,
D. W.
, and
Viskanta
,
R.
,
1976
, “
Transient Combined Laminar Free Convection and Radiation in a Rectangular Enclosure
,”
J. Fluid Mech.
,
78
(
1
), pp.
65
85
.
3.
Kottke
,
P. A.
,
Ferguson
,
T. P.
, and
Fedorov
,
A. G.
,
2004
, “
Scale Analysis of Combined Thermal Radiation and Convection Heat Transfer
,”
ASME J. Heat Transfer
,
126
(
2
), pp.
250
258
.
4.
Banda
,
M. K.
,
Klar
,
A.
, and
Seaïd
,
M.
,
2007
, “
A Lattice-Boltzmann Relaxation Scheme for Coupled Convection–Radiation Systems
,”
J. Comput. Phys.
,
226
(
2
), pp.
1408
1431
.
5.
Mezrhab
,
A.
,
Jami
,
M.
,
Bouzidi
,
M.
, and
Lallemand
,
P.
,
2007
, “
Analysis of Radiation–Natural Convection in a Divided Enclosure Using the Lattice Boltzmann Method
,”
Comput. Fluids
,
36
(
2
), pp.
423
434
.
6.
Bouali
,
H.
,
Mezrhab
,
A.
,
Amaoui
,
H.
, and
Bouzidi
,
M.
,
2006
, “
Radiation–Natural Convection Heat Transfer in an Inclined Rectangular Enclosure
,”
Int. J. Therm. Sci.
,
45
(
6
), pp.
553
566
.
7.
Mondal
,
B.
, and
Mishra
,
S. C.
,
2008
, “
Simulation of Natural Convection in the Presence of Volumetric Radiation Using the Lattice Boltzmann Method
,”
Numer. Heat Transfer, Part A
,
55
(
1
), pp.
18
41
.
8.
Mondal
,
B.
, and
Li
,
X.
,
2010
, “
Effect of Volumetric Radiation on Natural Convection in a Square Cavity Using Lattice Boltzmann Method With Non-Uniform Lattices
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4935
4948
.
9.
Lari
,
K.
,
Baneshi
,
M.
,
Gandjalikhan Nassab
,
S. A.
,
Komiya
,
A.
, and
Maruyama
,
S.
,
2011
, “
Combined Heat Transfer of Radiation and Natural Convection in a Square Cavity Containing Participating Gases
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
5087
5099
.
10.
Ansari
,
A. B.
, and
Nassab
,
S. A. G.
,
2011
, “
Study of Laminar Forced Convection of Radiating Gas Over an Inclined Backward Facing Step Under Bleeding Condition Using the Blocked-Off Method
,”
ASME J. Heat Transfer
,
133
(
7
), p.
072702
.
11.
Moufekkir
,
F.
,
Moussaoui
,
M. A.
,
Mezrhab
,
A.
,
Bouzidi
,
M.
, and
Laraqi
,
N.
,
2013
, “
Study of Double-Diffusive Natural Convection and Radiation in an Inclined Cavity Using Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
63
, pp.
65
86
.
12.
Moufekkir
,
F.
,
Moussaoui
,
M. A.
,
Mezrhab
,
A.
,
Fontaine
,
J. P.
, and
Bouzidi
,
M.
,
2013
, “
Investigation of Double Diffusive Natural Convection in Presence of Gray Gas Radiation Within a Square Cavity Using Multiple Relaxation Time Lattice Boltzmann Method
,”
ASME J. Heat Transfer
,
135
(
10
), p.
102701
.
13.
Luo
,
K.
,
Cao
,
Z. H.
,
Yi
,
H. L.
, and
Tan
,
H.-P.
,
2014
, “
Convection–Radiation Interaction in 3-D Irregular Enclosures Using the Least Squares Finite Element Method
,”
Numer. Heat Transfer, Part A
,
66
(
2
), pp.
165
184
.
14.
Luo
,
K.
,
Yi
,
H. L.
, and
Tan
,
H. P.
,
2014
, “
Radiation Effects on Bifurcation and Dual Solutions in Transient Natural Convection in a Horizontal Annulus
,”
AIP Adv.
,
4
(
5
), p.
057123
.
15.
Luo
,
K.
,
Yi
,
H. L.
, and
Tan
,
H. P.
,
2014
, “
Coupled Radiation and Mixed Convection in an Eccentric Annulus Using the Hybrid Strategy of Lattice Boltzmann-Meshless Method
,”
Numer. Heat Transfer, Part B
,
66
(
3
), pp.
243
267
.
16.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
17.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
,
Oxford University Press
,
Oxford, UK
.
18.
Aidun
,
C. K.
, and
Clausen
,
J. R.
,
2009
, “
Lattice-Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
439
472
.
19.
Higuera
,
F. J.
,
Succi
,
S.
, and
Benzi
,
R.
,
1989
, “
Lattice Gas Dynamics With Enhanced Collisions
,”
Europhys. Lett.
,
9
(
4
), pp.
345
349
.
20.
Jiaung
,
W. S.
,
Ho
,
J. R.
, and
Kuo
,
C. P.
,
2001
, “
Lattice Boltzmann Method for the Heat Conduction Problem With Phase Change
,”
Numer. Heat Transfer, Part B
,
39
(
2
), pp.
167
187
.
21.
Jeong
,
N.
,
Choi
,
D. H.
, and
Lin
,
C. L.
,
2008
, “
Estimation of Thermal and Mass Diffusivity in a Porous Medium of Complex Structure Using a Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3913
3923
.
22.
Asinari
,
P.
,
Mishra
,
S. C.
, and
Borchiellini
,
R.
,
2010
, “
A Lattice Boltzmann Formulation for the Analysis of Radiative Heat Transfer Problems in a Participating Medium
,”
Numer. Heat Transfer, Part B
,
57
(
2
), pp.
126
146
.
23.
Fattahi
,
E.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2010
, “
Lattice Boltzmann Simulation of Natural Convection Heat Transfer in Eccentric Annulus
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2353
2362
.
24.
Mohamad
,
A. A.
, and
Kuzmin
,
A.
,
2010
, “
A Critical Evaluation of Force Term in Lattice Boltzmann Method, Natural Convection Problem
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
990
996
.
25.
Mishra
,
S. C.
,
Lankadasu
,
A.
, and
Beronov
,
K. N.
,
2005
, “
Application of the Lattice Boltzmann Method for Solving the Energy Equation of a 2-D Transient Conduction–Radiation Problem
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3648
3659
.
26.
Filippova
,
O.
,
Succi
,
S.
,
Mazzocco
,
F.
,
Arrighetti
,
C.
,
Bella
,
G.
, and
Hänel
,
D.
,
2001
, “
Multiscale Lattice Boltzmann Schemes With Turbulence Modeling
,”
J. Comput. Phys.
,
170
(
2
), pp.
812
829
.
27.
Wallace
,
J. R.
,
Elmquist
,
K. A.
, and
Haines
,
E. A.
,
1989
, “
A Ray Tracing Algorithm for Progressive Radiosity
,”
SIGGRAPH Comput. Graphics
,
23
(
3
), pp.
315
324
.
28.
Wang
,
A.
,
Modest
,
M. F.
,
Haworth
,
D. C.
, and
Wang
,
L.
,
2008
, “
Monte Carlo Simulation of Radiative Heat Transfer and Turbulence Interactions in Methane/Air Jet Flames
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
269
279
.
29.
Mishra
,
S. C.
, and
Lankadasu
,
A.
,
2005
, “
Transient Conduction–Radiation Heat Transfer in Participating Media Using the Lattice Boltzmann Method and the Discrete Transfer Method
,”
Numer. Heat Transfer, Part A
,
47
(
9
), pp.
935
954
.
30.
Ismail
,
K. A. R.
, and
Salinas
,
C. S.
,
2004
, “
Application of Multidimensional Scheme and the Discrete Ordinate Method to Radiative Heat Transfer in a Two-Dimensional Enclosure With Diffusely Emitting and Reflecting Boundary Walls
,”
J. Quant. Spectrosc. Radiat. Transfer
,
88
(
4
), pp.
407
422
.
31.
Kim
,
C.
,
Kim
,
M. Y.
,
Yu
,
M. J.
, and
Mishra
,
S. C.
,
2010
, “
Unstructured Polygonal Finite-Volume Solutions of Radiative Heat Transfer in a Complex Axisymmetric Enclosure
,”
Numer. Heat Transfer, Part B
,
57
(
3
), pp.
227
239
.
32.
Liu
,
L. H.
,
Zhang
,
L.
, and
Tan
,
H. P.
,
2006
, “
Finite Element Method for Radiation Heat Transfer in Multi-Dimensional Graded Index Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
97
(
3
), pp.
436
445
.
33.
Tan
,
J. Y.
,
Zhao
,
J. M.
,
Liu
,
L. H.
, and
Wang
,
Y. Y.
,
2009
, “
Comparative Study on Accuracy and Solution Cost of the First/Second-Order Radiative Transfer Equations Using the Meshless Method
,”
Numer. Heat Transfer, Part B
,
55
(
4
), pp.
324
337
.
34.
Wang
,
C. A.
,
Sadat
,
H.
,
Ledez
,
V.
, and
Lemonnier
,
D.
,
2010
, “
Meshless Method for Solving Radiative Transfer Problems in Complex Two-Dimensional and Three-Dimensional Geometries
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2282
2288
.
35.
Luo
,
K.
,
Cao
,
Z. H.
,
Yi
,
H. L.
, and
Tan
,
H. P.
,
2014
, “
A Direct Collocation Meshless Approach With Upwind Scheme for Radiative Transfer in Strongly Inhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
135
, pp.
66
80
.
36.
Tan
,
J. Y.
,
Liu
,
L. H.
, and
Li
,
B. X.
,
2006
, “
Least-Squares Radial Point Interpolation Collocation Meshless Method for Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
669
673
.
37.
Lallemand
,
P.
, and
Luo
,
L. S.
,
2003
, “
Lattice Boltzmann Method for Moving Boundaries
,”
J. Comput. Phys.
,
184
(
2
), pp.
406
421
.
38.
Luo
,
L. S.
,
Liao
,
W.
,
Chen
,
X.
,
Peng
,
Y.
, and
Zhang
,
W.
,
2011
, “
Numerics of the Lattice Boltzmann Method: Effects of Collision Models on the Lattice Boltzmann Simulations
,”
Phys. Rev. E
,
83
(
5
), p.
056710
.
39.
Lallemand
,
P.
, and
Luo
,
L. S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), pp.
6546
6562
.
40.
Mishra
,
S. C.
, and
Roy
,
H. K.
,
2007
, “
Solving Transient Conduction and Radiation Heat Transfer Problems Using the Lattice Boltzmann Method and the Finite Volume Method
,”
J. Comput. Phys.
,
223
(
1
), pp.
89
107
.
41.
Zhao
,
J. M.
,
Tan
,
J. Y.
, and
Liu
,
L. H.
,
2013
, “
A Second Order Radiative Transfer Equation and Its Solution by Meshless Method With Application to Strongly Inhomogeneous Media
,”
J. Comput. Phys.
,
232
(
1
), pp.
431
455
.
42.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
,
1992
, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements
,”
Comput. Mech.
,
10
(
5
), pp.
307
318
.
43.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
(
1
), pp.
389
396
.
44.
Gallivan
,
M. A.
,
Noble
,
D. R.
,
Georgiadis
,
J. G.
, and
Buckius
,
R. O.
,
1997
, “
An Evaluation of the Bounce-Back Boundary Condition for Lattice Boltzmann Simulations
,”
Int. J. Numer. Methods Fluids
,
25
(
3
), pp.
249
263
.
45.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L. S.
, and
Shyy
,
W.
,
2003
, “
Viscous Flow Computations With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
,
39
(
5
), pp.
329
367
.
46.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
An Extrapolation Method for Boundary Conditions in Lattice Boltzmann Method
,”
Phys. Fluids
,
14
(
6
), pp.
2007
2010
.
47.
Dixit
,
H. N.
, and
Babu
,
V.
,
2006
, “
Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
727
739
.
48.
Fattahi
,
E.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2011
, “
Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in Eccentric Annulus
,”
Int. Commun. Heat Mass Transfer
,
38
(
8
), pp.
1135
1141
.
49.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1888
1906
.
50.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2010
, “
Numerical Investigation of Natural Convection Phenomena in a Uniformly Heated Circular Cylinder Immersed in Square Enclosure Filled With Air at Different Vertical Locations
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1115
1126
.
51.
Lee
,
J. M.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2010
, “
Natural Convection in a Square Enclosure With a Circular Cylinder at Different Horizontal and Diagonal Locations
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5905
5919
.
You do not currently have access to this content.