The one-dimensional (1D) conduction analytical approaches for a semi-infinite domain, widely adopted in the data processing of transient thermal experiments, can lead to large errors, especially near a corner of solid domain. The problems could be addressed by adopting 2D/3D numerical solutions (finite element analysis (FEA) or computational fluid dynamics (CFD)) of the solid field. In addition to needing the access to a conduction solver and extra computing effort, the numerical field solution based processing methods often require extra experimental efforts to obtain full thermal boundary conditions around corners. On a more fundamental note, it would be highly preferable that the experimental data processing is completely free of any numerical solutions and associated discretization errors, not least because it is often the case that the main purposes of many experimental measurements are exactly to validate the numerical solution methods themselves. In the present work, an analytical-solution based method is developed to enable the correction of the 2D conduction errors in a corner region without using any conduction solvers. The new approach is based on the recognition that a temperature time trace in a 2D corner situation is the result of the accumulated heat conductions in both the normal and lateral directions. An equivalent semi-infinite 1D conduction temperature trace for a correct heat transfer coefficient (HTC) can then be generated by reconstructing and removing the lateral conduction component at each time step. It is demonstrated that this simple correction technique enables the use of the standard 1D conduction analysis to get the correct HTC completely analytically without any aid of CFD or FEA solutions. In addition to a transient infrared (IR) thermal measurement case, two numerical test cases of practical interest with turbine blade tip heat transfer and film cooling are used for validation and demonstration. It has been consistently shown that the errors of the conventional 1D conduction analysis in the near corner regions can be greatly reduced by the new corner correction method.

References

References
1.
Taler
,
J.
,
1996
, “
Theory of Transient Experimental Techniques for Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3733
3748
.
2.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2013
,
Foundations of Heat Transfer
,
Wiley
,
Hoboken, NJ
.
3.
Schneider
,
P. J.
,
1955
,
Conduction Heat Transfer
,
Addington-Wesley
,
Reading, MA
.
4.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
,
Heat Transfer Measurements in Short Duration Hypersonic Facilities
, Vol.
165
,
NATO Advisory Group Aeronautical RDAGARDOGRAPH
, France.
5.
Wagner
,
G.
,
Kotulla
,
M.
,
Ott
,
P.
,
Weigand
,
B.
, and
von Wolfersdorf
,
J.
,
2005
, “
The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness
,”
ASME J. Turbomach
,
127
(
1
), pp.
175
182
.
6.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.
7.
Ekkad
,
S. V.
, and
Han
,
J.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.
8.
Chanteloup
,
D.
,
Juaneda
,
Y.
, and
Bolcs
,
A.
,
2002
, “
Combined 3-D Flow and Heat Transfer Measurements in a 2-Pass Internal Coolant Passage of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
124
(
4
), pp.
710
718
.
9.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2003
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 1: An Improved Technique
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
14
22
.
10.
Schulz
,
A.
,
2000
, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
945
956
.
11.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
12.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
13.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
,
1978
, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-14
(
5
), pp.
738
749
.
14.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), pp.
1
9
.
15.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2010
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.
16.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Over-Tip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
17.
Vedula
,
R. P.
,
Metzger
,
D. E.
, and
Bickford
,
W. B.
,
1988
, “
Effects of Lateral and Anisotropic Conduction on Determination of Local Convection Heat Transfer Characteristics With Transient Tests and Surface Coatings
,”
ASME J. Heat Transfer
,
104
, pp.
21
27
.
18.
Lin
,
M.
, and
Wang
,
T.
,
2002
, “
A Transient Liquid Crystal Method Using a 3-D Inverse Transient Conduction Scheme
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3491
3501
.
19.
von Wolfersdorf
,
J.
,
2007
, “
Influence of Lateral Conduction Due to Flow Temperature Variations in Transient Heat Transfer Measurements
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1122
1127
.
20.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
M. J.
,
2005
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
256
263
.
21.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1998
, “
Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystals Technique
,”
Exp. Therm. Fluid Sci.
,
18
(
2
), pp.
142
149
.
22.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2004
, “
A Technique for Processing Transient Heat Transfer, Liquid Crystal Experiments in the Presence of Lateral Conduction
,”
ASME J. Turbomach.
,
126
(
2
), pp.
247
258
.
23.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2002
, “
Full Coverage Film Cooling for Combustor Transition Sections
,”
ASME
Paper No. GT2002-30528.
24.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2010
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.
25.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
You do not currently have access to this content.