A non-Darcian model has been employed to investigate a nanofluid flow in a porous layer with double dispersion effects. The model incorporates Brownian motion and thermophoresis to study heat and mass transfer characteristics within the nanofluid. A similarity transformation is used to obtain a system of ordinary differential equations that are solved numerically using a linearization method. The effects of fluid and physical parameters such as thermal and solutal dispersions, the Brownian motion, and thermophoresis on the heat and mass transfer characteristics of the nanofluid are determined, and for some limiting cases, compared to results in the literature.

References

References
1.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particle
,”
Exp. Heat Transfer
,
11
, pp.
151
170
.10.1080/08916159808946559
2.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
151
155
.10.1115/1.1532008
3.
Ahuja
,
A. S.
,
1975
, “
Augmentation of Heat Transfer in Laminar Flow of Polystyrene Suspensions
,”
J. Appl. Phys.
,
46
, pp.
3408
3416
.10.1063/1.322107
4.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.10.1115/1.2150834
5.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
The Cheng-Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5792
5795
.10.1016/j.ijheatmasstransfer.2009.07.024
6.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Convection in a Horizontal Nanofluid Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
29
, pp.
217
223
.10.1016/j.euromechflu.2010.02.003
7.
Degan
,
G.
,
1972
, “
Some Aspects of Heat and Mass Transport in Porous Media
,”
Developments in Soil Science
(Fundamentals of Transport Phenomena in Porous Media), International Association for Hydraulic Research, Elsevier, London.
8.
Telles
,
R. S.
, and
Trevisan
,
O. V.
,
1993
, “
Dispersion in Heat and Mass Transfer Natural Convection Along Vertical Boundaries in Porous Media
,”
Int. J. Heat Mass Transfer
,
36
, pp.
1357
1365
.10.1016/S0017-9310(05)80103-6
9.
Murthy
,
P. V. S. N.
,
2000
, “
Effects of Double Dispersion on Mixed Convection Heat and Mass Transfer in Non-Darcy Porous Medium
,”
ASME J. Heat Transfer
,
122
, pp.
476
484
.10.1115/1.1286995
10.
El-Amin
,
M. F.
,
2004
, “
Double Dispersion Effects on Natural Convection Heat and Mass Transfer in Non-Darcy Porous Medium
,”
Appl. Math. Comput.
,
156
, pp.
1
17
.10.1016/j.amc.2003.07.001
11.
Narayana
,
P. A. L.
, and
Sibanda
,
P.
,
2011
, “
Influence of the Soret Effect and Double Dispersion on MHD Mixed Convection Along a Vertical Flat Plate in Non-Darcy Porous Medium
,”
Int. J. Nonlinear Sci.
,
12
, pp.
352
364
.
12.
Murti
,
A. S. N.
,
Sastry
,
D. R. V. S. R. K.
,
Kameswaran
,
P. K.
, and
Poorna Kantha
,
T.
,
2011
, “
Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
,”
World Acad. Sci. Eng. Technol.
,
60
, pp.
1232
1239
.
13.
Awad
,
F. G.
,
Sibanda
,
P.
,
Motsa
,
S. S.
, and
Makinde
,
O. D.
,
2011
, “
Convection From an Inverted Cone in a Porous Medium With Cross-Diffusion Effects
,”
Comput. Math. Appl.
,
61
, pp.
1431
1441
.10.1016/j.camwa.2011.01.015
14.
Kairi
,
R. R.
,
2001
, “
Viscosity and Dispersion Effects on Natural Convection From a Vertical Cone in a Non-Newtonian Fluid Saturated Porous Medium
,”
Therm. Sci.
,
15
, pp.
S307
S316
.10.2298/TSCI110614124K
15.
Srinivasacharya
,
D.
,
Pranitha
,
J.
, and
RamReddy
,
Ch.
,
2012
, “
Magnetic and Double Dispersion Effects on Free Convection in a Non-Darcy Porous Medium Saturated With Power-Law Fluid
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
13
, pp.
210
218
.10.1080/15502287.2012.660231
16.
Motsa
,
S. S.
, and
Sibanda
,
P.
,
2012
, “
A Linearization Method for Non-Linear Singular Boundary Value Problems
,”
Comput. Math. Appl.
,
63
, pp.
1197
1203
.10.1016/j.camwa.2011.12.035
17.
Motsa
,
S. S.
, and
Sibanda
,
P.
,
2012
, “
On the Solution of MHD Flow Over a Nonlinear Stretching Sheet by an Efficient Semi-Analytical Technique
,”
Int. J. Numer. Methods Fluids
,
68
, pp.
1524
1537
.10.1002/fld.2541
You do not currently have access to this content.