Latent heat thermal storage systems (LHTS) utilize their latent heat capacity to dissipate high heat fluxes while maintaining quasi-isothermal conditions. Phase change materials (PCMs) absorb a large amount of energy during their phase transformation from solid to liquid, maintaining quasi-isothermal conditions. However, they are often beset with low thermal conductivities which necessitate the use of a thermal conductivity enhancer (TCE) as it is impossible to design a device that can completely avoid sensible heat in the premelting or postmelting phase. In this study, the heat transfer performance of LHTS with cross plate fins as a TCE is numerically investigated for different values of fin thicknesses and fin numbers along the length and breadth. A hybrid artificial neural network coupled genetic algorithm (ANN–GA) is then used to obtain the optimized dimensions for the composite heat sink with cross plate fins as TCE for a fixed volume and a specific heat flux input. The numerically optimized configuration is finally validated with in-house experiments.

References

References
1.
Woodson
,
W. E.
,
Tillman
,
T.
, and
Tillman
,
P.
,
1992
,
Human Factors Design Handbook: Information and Guidelines for the Design of Systems, Facilities, Equipment and Products for Human Use
,
2nd ed.
,
McGraw-Hill
,
New York
.
2.
Akhilesh
,
R.
,
Narasimhan
,
A.
, and
Balaji
,
C.
,
2005
, “
Method to Improve Geometry for Heat Transfer Enhancement in PCM Composite Heat Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2759
2770
.10.1016/j.ijheatmasstransfer.2005.01.032
3.
Hosseinizadeh
,
S. F.
,
Tan
,
F. L.
, and
Moosania
,
S. M.
,
2011
, “
Experimental and Numerical Studies on Performance of PCM-Based Heat Sink With Different Configurations of Internal Fins
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3827
3838
.10.1016/j.applthermaleng.2011.07.031
4.
Wang
,
Y.
, and
Yang
,
Y.
,
2011
, “
Three-Dimensional Transient Cooling Simulations of a Portable Electronic Device Using PCM (Phase Change Materials) in Multi-Fin Heat Sink
,”
Energy
,
36
(
8
), pp.
5214
5224
.10.1016/j.energy.2011.06.023
5.
Mahmoud
,
S.
,
Tang
,
A.
,
Toh
,
C.
,
AL-Dadah
,
R.
, and
Soo
,
S. L.
,
2013
, “
Experimental Investigation of Inserts Configurations and PCM Type on the Thermal Performance of PCM Based Heat Sinks
,”
Appl. Energy
,
112
, pp.
1349
1356
.10.1016/j.apenergy.2013.04.059
6.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Experimental Investigations on the Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
27
30
.10.1016/j.icheatmasstransfer.2013.05.018
7.
Levin
,
P. P.
,
Shitzer
,
A.
, and
Hetsroni
,
G.
,
2013
, “
Numerical Optimization of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
,
61
, pp.
638
645
.10.1016/j.ijheatmasstransfer.2013.01.056
8.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.10.1016/j.applthermaleng.2012.10.056
9.
Lachheb
,
M.
,
Karkri
,
M.
,
Albouchi
,
F.
,
Mzali
,
F.
, and
Nasrallah
,
S. B.
,
2014
, “
Thermophysical Properties Estimation of Paraffin/Graphite Composite Phase Change Material Using an Inverse Method
,”
Energy Convers. Manage.
,
82
, pp.
229
237
.10.1016/j.enconman.2014.03.021
10.
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Thermal Performance of a PCM Heat Sink Under Different Heat Loads: An Experimental Study
,”
Int. J. Therm. Sci.
,
79
, pp.
240
249
.10.1016/j.ijthermalsci.2013.12.018
11.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1642
1649
.10.1016/j.ijheatmasstransfer.2011.11.020
12.
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2008
, “
Studies on Optimum Distribution of Fins in Heat Sink Filled With Phase Change Materials
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034505
.10.1115/1.2804948
13.
Atul
,
N.
,
Somani
,
A.
,
Shrot
,
A.
, and
Narasimhan
,
A.
,
2008
, “
Genetic Algorithm Based Optimization of PCM Based Heat Sinks and Effect of Heat Sink Parameters on Operational Time
,”
ASME J. Heat Transfer
,
130
(
1
), p.
011401
.10.1115/1.2780182
14.
Ge
,
H.
, and
Liu
,
J.
,
2013
, “
Keeping Smartphones Cool With Gallium Phase Change Material
,”
ASME J. Heat Transfer
,
135
(
5
), p.
054503
.10.1115/1.4023392
15.
Siahpush
,
A.
,
O'Brien
,
J.
, and
Crepeau
,
J.
,
2008
, “
Phase Change Heat Transfer Using Copper Porous Foam
,”
ASME J. Heat Transfer
,
130
(
8
), p.
082301
.10.1115/1.2928010
16.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2004
, “
A Two-Temperature Model for Solid–Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.10.1115/1.2010494
17.
Kandasamy
,
R.
, and
Wang
,
X. Q.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.10.1016/j.applthermaleng.2007.06.010
18.
Tan
,
F. L.
, and
Tso
,
C. P.
,
2004
, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
159
169
.10.1016/j.applthermaleng.2003.09.005
19.
Saha
,
S. K.
, and
Dutta
,
P.
,
2010
, “
Heat Transfer Correlations for PCM-Based Heat Sinks With Plate Fins
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2485
2491
.10.1016/j.applthermaleng.2010.06.021
20.
Kozak
,
Y.
,
Abramzon
,
B.
, and
Ziskind
,
G.
,
2013
, “
Experimental and Numerical Investigation of a Hybrid PCM–Air Heat Sink
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
142
152
.10.1016/j.applthermaleng.2013.05.021
21.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.10.1016/0017-9310(87)90317-6
22.
MATLAB
,
2010
,
matlab Version 7.10.0
,
The MathWorks, Inc.
,
Natick, MA
.
You do not currently have access to this content.