Experiments are performed to analyze melting and solidification of a phase change material (PCM) enclosed in a vertical cylinder by a concentrically located heat pipe (HP) surrounded by either aluminum foam or radial aluminum foils. The PCM liquid fraction, temperature distribution, melting (solidification) rates, and effectiveness are reported to quantify the improvement in thermal performance relative to a base case, a Rod-PCM configuration. Parameters of interest include the porosity of the PCM-metal composite, the foil thickness, the number of foils, and the foam pore density. The main contributor to enhanced performance is shown to be the porosity for both the HP-Foil-PCM and HP-Foam-PCM configurations. Both of these configurations improve heat transfer rates relative to either the HP-PCM or the Rod-PCM configuration. However, the HP-Foil-PCM configuration with one-third of the metal (foil) mass is shown to have approximately the same performance as the HP-Foam-PCM configuration, for the range of porosities studied here (0.870–0.987). This may be attributed to the metal morphology and resulting contact area between the metal enhancer and the HP. The HP-Foil-PCM configuration, with a porosity of 0.957 using 162 foils of thickness 0.024 mm, attained an overall rate of phase change that is about 15 times greater than that of the Rod-PCM configuration and about 10 times greater than that of the HP-PCM configuration. The greatest degree of enhancement was achieved with the HP-Foil-PCM configuration (with porosity 0.957) yielding an average effectiveness during melting (solidification) of 14.7 (8.4), which is an extraordinary improvement over the base case.

References

References
1.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1597
1615
.10.1016/j.enconman.2003.09.015
2.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
3.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.10.1016/j.rser.2009.10.015
4.
Cabeza
,
L. F.
,
Castell
,
A.
,
Barreneche
,
C.
,
de Gracia
,
A.
, and
Fernández
,
A. I.
,
2011
, “
Materials Used as PCM in Thermal Energy Storage in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1675
1695
.10.1016/j.rser.2010.11.018
5.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1127
1138
.10.1016/S0196-8904(98)00025-9
6.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat Mass Transfer
,
55
(5–6), pp.
1642
1649
.10.1016/j.ijheatmasstransfer.2011.11.020
7.
Yang
,
Y.-T.
, and
Wang
,
Y.-H.
,
2012
, “
Numerical Simulation of Three-Dimensional Transient Cooling Application on a Portable Electronic Device Using Phase Change Material
,”
Int. J. Therm. Sci.
,
51
, pp.
155
162
.10.1016/j.ijthermalsci.2011.08.011
8.
Zhao
,
W.
,
Elmozughi
,
A. F.
,
Oztekin
,
A.
, and
Neti
,
S.
,
2013
, “
Heat Transfer Analysis of Encapsulated Phase Change Material for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
63
, pp.
323
335
.10.1016/j.ijheatmasstransfer.2013.03.061
9.
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Economic Evaluation of Latent Heat Thermal Energy Storage Using Embedded Thermosyphons for Concentrating Solar Power Applications
,”
Sol. Energy
,
85
(
10
), pp.
2461
2473
.10.1016/j.solener.2011.07.006
10.
Oró
,
E.
,
Gil
,
A.
,
de Gracia
,
A.
,
Boer
,
D.
, and
Cabeza
,
L. F.
,
2012
, “
Comparative Life Cycle Assessment of Thermal Energy Storage Systems for Solar Power Plants
,”
Renewable Energy
,
44
, pp.
166
173
.10.1016/j.renene.2012.01.008
11.
Bayón
,
R.
,
Rojas
,
E.
,
Valenzuela
,
L.
,
Zarza
,
E.
, and
León
,
J.
,
2010
, “
Analysis of the Experimental Behaviour of a 100 kWth Latent Heat Storage System for Direct Steam Generation in Solar Thermal Power Plants
,”
Appl. Therm. Eng.
,
30
(
17–18
), pp.
2643
2651
.10.1016/j.applthermaleng.2010.07.011
12.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Computational Studies on a Latent Thermal Energy Storage System With Integral Heat Pipes for Concentrating Solar Power
,”
Appl. Energy
,
103
, pp.
400
415
.10.1016/j.apenergy.2012.09.056
13.
Shabgard
,
H.
,
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2012
, “
Heat Transfer and Exergy Analysis of Cascaded Latent Heat Storage With Gravity-Assisted Heat Pipes for Concentrating Solar Power Applications
,”
Sol. Energy
,
86
(
3
), pp.
816
830
.10.1016/j.solener.2011.12.008
14.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
.10.1016/j.solener.2010.04.022
15.
Sharifi
,
N.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of PCM Melting in Enclosures With Horizontally-Finned Internal Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4182
4192
.10.1016/j.ijheatmasstransfer.2011.05.027
16.
Faghri
,
A.
,
1990
, “
Thermal Energy Storage Heat Exchanger
,” U.S. Patent No. 4,976,308.
17.
Faghri
,
A.
,
1991
, “
Micro Heat Pipe Energy Storage System
,” U.S. Patent No. 5,000,252.
18.
Shabgard
,
H.
,
Bergman
,
T. L.
,
Sharifi
,
N.
, and
Faghri
,
A.
,
2010
, “
High Temperature Latent Heat Thermal Energy Storage Using Heat Pipes
,”
Int. J. Heat Mass Transfer
,
53
(
15
), pp.
2979
2988
.10.1016/j.ijheatmasstransfer.2010.03.035
19.
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of Latent Heat Energy Storage Using Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
3476
3484
.10.1016/j.ijheatmasstransfer.2011.03.038
20.
Sharifi
,
N.
,
Wang
,
S.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2012
, “
Heat Pipe-Assisted Melting of a Phase Change Material
,”
Int. J. Heat Mass Transfer
,
55
(13–14), pp.
3458
3469
.10.1016/j.ijheatmasstransfer.2012.03.023
21.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(13–14), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
22.
Han
,
X.-H.
,
Wang
,
Q.
,
Park
,
Y.-G.
,
T’Joen
,
C.
,
Sommers
,
A.
, and
Jacobi
,
A.
,
2012
, “
A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks
,”
Heat Transfer Eng.
,
33
(
12
), pp.
991
1009
.10.1080/01457632.2012.659613
23.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
Thermal and Exergetic Analysis of Metal Foam-Enhanced Cascaded Thermal Energy Storage (MF-CTES)
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
86
96
.10.1016/j.ijheatmasstransfer.2012.11.034
24.
Xie
,
Y.
,
Song
,
J.
,
Chi
,
P.
, and
Yu
,
J.
,
2013
, “
Performance Enhancement of Phase Change Thermal Energy Storage Unit Using Fin and Copper Foam
,”
Appl. Mech. Mater.
,
260
, pp.
137
141
.10.4028/www.scientific.net/AMM.260-261.137
25.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modeling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
.10.1016/j.apenergy.2013.02.022
26.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Experimental and Numerical Studies on Melting Phase Change Heat Transfer in Open-Cell Metallic Foams Filled With Paraffin
,”
Appl. Therm. Eng.
,
37
, pp.
1
9
.10.1016/j.applthermaleng.2011.11.001
27.
Cui
,
H. T.
,
2012
, “
Experimental Investigation on the Heat Charging Process by Paraffin Filled With High Porosity Copper Foam
,”
Appl. Therm. Eng.
,
39
, pp.
26
28
.10.1016/j.applthermaleng.2012.01.037
28.
Qu
,
Z. G.
,
Li
,
W. Q.
,
Wang
,
J. L.
, and
Tao
,
W. Q.
,
2012
, “
Passive Thermal Management Using Metal Foam Saturated With Phase Change Material in a Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1546
1549
.10.1016/j.icheatmasstransfer.2012.09.001
29.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2011
, “
A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals
,”
Energy
,
36
(
9
), pp.
5539
5546
.10.1016/j.energy.2011.07.019
30.
Zhao
,
C. Y.
, and
Wu
,
Z. G.
,
2011
, “
Heat Transfer Enhancement of High Temperature Thermal Energy Storage Using Metal Foams and Expanded Graphite
,”
Sol. Energy Mater. Sol. Cells
,
95
(
2
), pp.
636
643
.10.1016/j.solmat.2010.09.032
31.
Wu
,
Z. G.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations of Porous Materials in High Temperature Thermal Energy Storage Systems
,”
Sol. Energy
,
85
(
7
), pp.
1371
1380
.10.1016/j.solener.2011.03.021
32.
Zhou
,
D.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
970
977
.10.1016/j.applthermaleng.2010.11.022
33.
Chen
,
Z.
,
Gu
,
M.
, and
Peng
,
D.
,
2010
, “
Heat Transfer Performance Analysis of a Solar Flat-Plate Collector With an Integrated Metal Foam Porous Structure Filled With Paraffin
,”
Appl. Therm. Eng.
,
30
(14–15), pp.
1967
1973
.10.1016/j.applthermaleng.2010.04.031
34.
Sharifi
,
N.
,
Faghri
,
A.
,
Bergman
,
T. L.
, and
Allen
,
M. J.
,
2014
, “
Melting and Solidification Enhancement Using a Combined Heat Pipe, Foil Approach
,”
Int. J. Heat Mass Transfer
,
78
, pp.
930
941
.10.1016/j.ijheatmasstransfer.2014.07.054
35.
K. R. Reynolds Company
,
2013
, http://www.krreynoldscompany.com
36.
De Jaeger
,
P.
,
T’Joen
,
C.
,
Huisseune
,
H.
,
Ameel
,
B.
,
De Schampheleire
,
S.
, and
De Paepe
,
M.
,
2012
, “
Assessing the Influence of Four Cutting Methods on the Thermal Contact Resistance of Open-Cell Aluminum Foam
,”
Int. J. Heat Mass Transfer
,
55
(
21
), pp.
6142
6151
.10.1016/j.ijheatmasstransfer.2012.06.033
37.
De Jaeger
,
P.
,
T’Joen
,
C.
,
Huisseune
,
H.
,
Ameel
,
B.
,
De Schampheleire
,
S.
, and
De Paepe
,
M.
,
2012
, “
Assessing the Influence of Four Bonding Methods on the Thermal Contact Resistance of Open-Cell Aluminum Foam
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6200
6210
.10.1016/j.ijheatmasstransfer.2012.06.043
You do not currently have access to this content.