Secondary atomization characteristics of burning bicomponent (ethanol–water) droplets containing titania nanoparticles (NPs) in dilute (0.5% and 1 wt.%) and dense concentrations (5% and 7.5 wt.%) are studied experimentally at atmospheric pressure under normal gravity. It is observed that both types of nanofuel droplets undergo distinct modes of secondary breakup, which are primarily responsible for transporting particles from the droplet domain to the flame zone. For dilute nanosuspensions, disruptive response is characterized by low intensity atomization modes that cause small-scale localized flame distortion. In contrast, the disruption behavior at dense concentrations is governed by high intensity bubble ejections, which result in severe disruption of the flame envelope.

References

References
1.
Tyagi
,
H.
,
Phelan
,
P. E.
,
Prasher
,
R.
,
Peck
,
R.
,
Lee
,
T.
,
Pacheco
,
J. R.
, and
Arentzen
,
P.
,
2008
, “
Increased Hot Plate Ignition Probability for Nanoparticles-Laden Diesel Fuel
,”
Nano Lett.
,
8
(
5
), pp.
1410
1416
.10.1021/nl080277d
2.
Dreizin
,
E. L.
,
2009
, “
Metal Based Reactive Nanomaterials
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
141
167
.10.1016/j.pecs.2008.09.001
3.
Yetter
,
R. A.
,
Risha
,
G. A.
, and
Son
,
S. F.
,
2009
, “
Metal Particle Combustion and Nanotechnology
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1819
1838
.10.1016/j.proci.2008.08.013
4.
Granier
,
J. J.
, and
Pantoya
,
M. L.
,
2004
, “
Laser Ignition of Nanocomposite Thermites
,”
Combust. Flame
,
138
(
4
), pp.
373
383
.10.1016/j.combustflame.2004.05.006
5.
Beloni
,
E.
,
Hoffmann
, V
. K.
, and
Dreizin
,
E. L.
,
2008
, “
Combustion of Decane Based Slurries With Metallic Fuel Additives
,”
J. Propul. Power
,
24
(
6
), pp.
1403
1411
.10.2514/1.28042
6.
Gan
,
Y.
, and
Qiao
,
L.
,
2011
, “
Combustion Characteristics of Fuel Droplets With Addition of Nano and Micron Sized Aluminium Particles
,”
Combust. Flame
,
158
(
2
), pp.
354
368
.10.1016/j.combustflame.2010.09.005
7.
Gan
,
Y.
,
Lim
,
Y. S.
, and
Qiao
,
L.
,
2012
, “
Combustion of Nanofluid Fuels With the Addition of Boron and Iron Particles at Dilute and Dense Concentrations
,”
Combust. Flame
,
159
(
4
), pp.
1732
1740
.10.1016/j.combustflame.2011.12.008
8.
Javed
,
I.
,
Baek
,
S. W.
, and
Waheed
,
K.
,
2013
, “
Evaporation Characteristics of Heptane Droplets With the Addition of Aluminum Nanoparticles at Elevated Temperatures
,”
Combust. Flame
,
160
(
1
), pp.
170
183
.10.1016/j.combustflame.2012.09.005
9.
Javed
,
I.
,
Baek
,
S. W.
,
Waheed
,
K.
,
Ali
,
G.
, and
Cho
,
S. O.
,
2013
, “
Evaporation Characteristics of Kerosene Droplets With Dilute Concentrations of Ligand-Protected Aluminum Nanoparticles at Elevated Temperatures
,”
Combust. Flame
,
160
(
12
), pp.
2955
2963
.10.1016/j.combustflame.2013.07.007
10.
Javed
,
I.
,
Baek
,
S. W.
, and
Waheed
,
K.
,
2013
, “
Effects of Dense Concentrations of Aluminum Nanoparticles on the Evaporation Behavior of Kerosene Droplet at Elevated Temperatures: The Phenomenon of Microexplosion
,”
Exp. Therm. Fluid Sci.
,
56
, pp.
33
44
.10.1016/j.expthermflusci.2013.11.006
11.
Miglani
,
A.
,
Basu
,
S.
, and
Kumar
,
R.
,
2014
, “
Insight Into Instabilities in Burning Droplets
,”
Phys. Fluids
,
26
(
3
), p.
032101
.10.1063/1.4866866
12.
Miglani
,
A.
,
Basu
,
S.
, and
Kumar
,
R.
,
2014
, “
Suppression of Instabilities in Burning Droplets Using Preferential Acoustic Perturbations
,”
Combust. Flame
,
161
(
12
), pp.
3181
3190
.10.1016/j.combustflame.2014.06.010
13.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Pergamon Press
, Oxford.
14.
Wright
,
A.
,
2002
, “
Fluid Mechanics: Impact Factors
,”
Nature (London)
,
419
(6907), p.
576
.10.1038/419576a
15.
Mandre
,
S.
,
Mani
,
M.
, and
Brenner
,
M. P.
,
2009
, “
Precursors to Splashing of Liquid Droplets on a Solid Surface
,”
Phys. Rev. Lett.
,
102
(
13
), p.
134502
.10.1103/PhysRevLett.102.134502
16.
Manzello
,
S. L.
, and
Yang
,
J. C.
,
2002
, “
On the Collision Dynamics of Water Droplet Containing an Additive on a Heated Solid Surface
,”
Proc. R. Soc. London A
,
458
(
2026
), pp.
2417
2444
.10.1098/rspa.2002.0980
17.
Juarez
,
G.
,
Gastopoulos
,
T.
,
Zhang
,
Y.
,
Siegel
,
M. L.
, and
Arratia
,
P. E.
,
2012
, “
Splash Control of Drop Impacts With Geometric Targets
,”
Phys. Rev. E
,
85
(
2
), p.
026319
.10.1103/PhysRevE.85.026319
18.
Driscoll
,
M. M.
,
Stevens
,
S. C.
, and
Nagel
,
S. R.
,
2010
, “
Thin Film Formation During Splashing of Viscous Liquids
,”
Phys. Rev. E
,
82
(
3
), p.
036302
.10.1103/PhysRevE.82.036302
19.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London A
,
432
(
1884
), pp.
13
41
.10.1098/rspa.1991.0002
20.
Lagubeau
,
G.
,
Fontelos
,
M. A.
,
Josserand
,
C.
,
Maurel
,
A.
,
Pagneux
,
V.
, and
Petitjeans
,
P.
,
2012
, “
Spreading Dynamics of Drop Impacts
,”
J. Fluid Mech.
,
713
, pp.
50
60
.10.1017/jfm.2012.431
21.
Josserand
,
C.
,
Lemoyne
,
L.
,
Troeger
,
T.
, and
Zalseki
,
S.
,
2005
, “
Droplet Impact on a Dry Surface: Triggering the Splash With a Small Obstacle
,”
J. Fluid Mech.
,
524
, pp.
47
56
.10.1017/S0022112004002393
22.
Moreira
,
A. L. N.
,
Moita
,
A. S.
, and
Chandra
,
S.
,
2011
,
Handbook of Atomization and Sprays—Theory and Applications
,
N.
Ashgriz
, ed.,
Springer
,
New York
, pp.
183
211
.
23.
Gelfand
,
B. E.
,
1996
, “
Droplet Breakup Phenomenon in Flows With Velocity Lag
,”
Prog. Energy Combust. Sci.
,
22
(
3
), pp.
201
265
.10.1016/S0360-1285(96)00005-6
24.
Guildenbecher
,
D. R.
,
López-Rivera
,
C.
, and
Sojka
,
P. E.
,
2009
, “
Secondary Atomization
,”
Exp. Fluids
,
46
(
3
), pp.
371
402
.10.1007/s00348-008-0593-2
25.
Lee
,
J. H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U.
, and
Choi
,
C. J.
,
2008
, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Trans.
,
51
(
11
), pp.
2651
2656
.10.1016/j.ijheatmasstransfer.2007.10.026
26.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
New York
.10.1017/CBO9780511754517
27.
Otsu
,
N.
,
1979
, “
Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.10.1109/tsmc.1979.4310076
You do not currently have access to this content.