A special case of Falkner–Skan flows past stretching boundaries is considered when the momentum and thermal slip boundary conditions are allowed at the boundary. Exact analytical solutions are found for the converging channel (wedge nozzle). The solutions are shown to be unique, double, or triple depending on the slip parameter and wall moving parameter. The provided closed-form analytical solutions are rare class of exact solutions for the Falkner–Skan flow equations. Thresholds of existence of multiple solutions are determined. For each flow solutions, the corresponding energy equation is also exactly solved when the internal heat generated by viscous dissipation can be neglected or numerically integrated when the viscous dissipation is significant. Analytic and numeric values of the rate of heat transfer affected by the presence of a surface temperature jump are also worked out. The possibility of realistic physical solution out of multiple solutions is finally discussed.

References

References
1.
Falkner
,
V. M.
, and
Skan
,
S. W.
,
1931
, “
Some Approximate Solutions of the Boundary-Layer Equations
,”
Phiols. Mag.
,
12
, pp.
865
896
.10.1080/14786443109461870
2.
Craven
,
A. H.
, and
Peletier
,
L. A.
,
1972
, “
On the Uniqueness of Solutions of the Falkner–Skan Equation
,”
Mathematika
,
19
(
1
), pp.
135
138
.10.1112/S0025579300005064
3.
Pantokratoras
,
A.
,
2006
, “
The Falkner–Skan Flow With Constant Wall Temperature and Variable Viscosity
,”
Int. J. Therm. Sci.
,
45
(
4
), pp.
378
389
.10.1016/j.ijthermalsci.2005.06.004
4.
Riley
,
N.
, and
Weidman
,
P. D.
,
1989
, “
Multiple Solutions of the Falkner–Skan Equation for Flow Past a Stretching Boundary
,”
SIAM J. Appl. Math.
,
49
(
5
), pp.
1350
1358
.10.1137/0149081
5.
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2005
, “
Universal Solutions for the Streamwise Variation of the Temperature of a Moving Sheet in the Presence of a Moving Fluid
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3047
3056
.10.1016/j.ijheatmasstransfer.2005.02.028
6.
Magyari
,
E.
,
2009
, “
Falkner–Skan Flows Past Moving Boundaries: An Exactly Solvable Case
,”
Acta Mech.
,
203
(
1–2
), pp.
13
21
.10.1007/s00707-008-0031-9
7.
Turkyilmazoglu
,
M.
,
2011
, “
Multiple Solutions of Heat and Mass Transfer of MHD Slip Flow for the Viscoelastic Fluid Over a Stretching Sheet
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2264
2276
.10.1016/j.ijthermalsci.2011.05.014
8.
Turkyilmazoglu
,
M.
,
2012
, “
Exact Analytical Solutions for Heat and Mass Transfer of MHD Slip Flow in Nanofluids
,”
Chem. Eng. Sci.
,
84
, pp.
182
187
.10.1016/j.ces.2012.08.029
9.
Turkyilmazoglu
,
M.
,
2013
, “
Heat and Mass Transfer of MHD Second Order Slip Flow
,”
Comput. Fluids
,
71
, pp.
426
434
.10.1016/j.compfluid.2012.11.011
10.
Turkyilmazoglu
,
M.
,
2015
, “
A Note on the Correspondence Between Certain Nanofluid Flows and Standard Fluid Flows
,”
ASME J. Heat Transfer
,
137
(
2
), p.
024501
.10.1115/1.4028807
11.
Martin
,
M. J.
, and
Boyd
,
I. D.
,
2010
, “
Falkner–Skan Flow Over a Wedge With Slip Boundary Conditions
,”
J. Thermophys. Heat Transfer
,
24
(
2
), pp.
263
270
.10.2514/1.43316
12.
Hutchins
,
D. K.
,
Harper
,
M. H.
, and
Felder
,
R. L.
,
1995
, “
Slip Correction Measurements for Solid Spherical Particles by Modulated Dynamic Light Scattering
,”
Aerosol Sci. Technol.
,
22
(
2
), pp.
202
218
.10.1080/02786829408959741
13.
Harley
,
J. C.
,
Huang
,
Y. F.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
,
1995
, “
Gas-Flow in Microchannels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.10.1017/S0022112095000358
14.
Mueller
,
T. J.
, and
DeLaurier
,
J. D.
,
2003
, “
Aerodynamics of Small Vehicles
,”
Annu. Rev. Fluid Mech.
,
35
, pp.
89
111
.10.1146/annurev.fluid.35.101101.161102
15.
Turkyilmazoglu
,
M.
,
2015
, “
Slip Flow and Heat Transfer Over a Specific Wedge: An Exactly Solvable Falkner–Skan Equation
,”
J. Eng. Math.
10.1007/s10665-014-9758-6
16.
Pohlhausen
,
K.
,
1921
, “
Zur Näherungsweisen Integration der Differentialgleichung der Laminaren Grenzschicht
,”
J. Appl. Math. Mech. (ZAMM)
,
1
, pp.
252
268
.10.1002/zamm.19210010402
17.
Magyari
,
E.
,
2007
, “
Backward Boundary Layer Heat Transfer in a Converging Channel
,”
Fluid Dyn. Res.
,
39
(
6
), pp.
493
504
.10.1016/j.fluiddyn.2007.02.001
18.
Turkyilmazoglu
,
M.
,
1998
, “
Linear Absolute and Convective Instabilities of Some Two- and Three Dimensional Flows
,” Ph.D. thesis, University of Manchester, Manchester, UK.
You do not currently have access to this content.