Artificial neural network (ANN) modeling of heat transfer from horizontal tube bundles immersed in gas fluidized bed of large particles (mustard, raagi and bajara) was investigated. The effect of fluidizing gas velocity on the heat transfer coefficient in the immersed tube bundles in in-line and staggered arrangement is discussed. The parameters particle diameter, temperature difference between bed and immersed surface were used in the neural network (NN) modeling along with fluidizing velocity. The feed-forward network with back propagation structure implemented using Levenberg–Marquardt's learning rule in the NN approach. The predictions of the ANN were found to be in good agreement with the experiment's values, as well as the results achieved by the developed correlations.

References

References
1.
Passos
,
M. L.
,
Barrozo
,
M. A.
, and
Mujumdar
,
A. S.
,
2013
,
Fluidization Engineering Practice
,
1st ed.
,
Laval
,
Canada
, Chap. 1.
2.
Rhodes
,
M.
,
2001
, “
Fluidization of Particles by Fluids
,” Technical Report, Monash University, Melbourne, Australia.
3.
Kim
,
S. W.
,
Ahn
,
J. Y.
,
Kim
,
S. D.
, and
Lee
,
D. H.
,
2003
, “
Heat Transfer and Bubble Characteristics in a Fluidized Bed With Immersed Horizontal Tube Bundle
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
399
409
.10.1016/S0017-9310(02)00296-X
4.
Decker
,
N.
, and
Glicksman
,
L. R.
,
1983
, “
Heat Transfer in Large Particle Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
26
(
9
), pp.
1307
1320
.10.1016/S0017-9310(83)80062-3
5.
Ravindranath
,
G.
,
2008
, “
Heat Transfer Studies of Single Bare Tube and Bare Tube Bundles in a Gas-Solid Fluidized Bed
,” Ph.D. thesis, Department of Mechanical Engineering, University BDT, COE Davanagere, India.
6.
Al-Dabbagh
,
M. S.
,
2006
, “
Experimental Study of Heat Transfer Between the Shallow Fluidized Bed and a Tube Bundle Immersed in It
,”
Al-Rafidain Eng.
,
14
(
4
), pp.
24
33
.
7.
Miccio
,
F.
,
Riccardis
,
A. D.
, and
Miccio
,
M.
,
2009
, “
Investigations on Heat Transfer Between a Bubbling Fluidized Bed and Immersed Tubes for Heat Recovery and Power Generation
,”
Italian Sec. Combust. Inst.
,
15
, pp.
1
4
.
8.
Saxena
,
S. C.
, and
Ganzha
,
V. L.
,
1984
, “
Heat Transfer to Immersed Surfaces in Gas-Fluidized Beds of Large Particles and Powder Characterization
,”
Powder Technol.
,
39
(
2
), pp.
199
208
.10.1016/0032-5910(84)85037-8
9.
Natale
,
F. D.
,
Lancia
,
A.
, and
Nigro
,
R.
,
2008
, “
A Single Particle Model for Surface-to-Bed Heat Transfer in Fluidized Beds
,”
Powder Technol.
,
187
(
1
), pp.
68
78
.10.1016/j.powtec.2008.01.014
10.
Wagialla
,
K. M.
,
Elnashaie
,
S. S.
, and
Fakeeha
,
A. H.
,
1990
, “
Review on Heat Transfer in Gas Solid Fluidized Beds
,”
J. King Saud Univ. Eng. Sci.
,
2
, pp.
331
346
.
11.
Deshmukh
,
S. A.
,
Volkers
,
S.
,
Annaland
,
M. S.
, and
Kuipers
,
H.
,
2005
, “
Heat Transfer in a Membrane Assisted Bubbling Fluidized With Immersed Horizontal Tubes
,”
Int. J. Chem. Reactor Eng.
,
3
(
A1
), pp.
1
16
.10.2202/1542-6580.1183
12.
Mickley
,
H. S.
, and
Fairbanks
,
D. F.
,
1955
, “
Mechanism of Heat Transfer to Fluidized Beds
,”
AIChE J.
,
1
(
3
), pp.
374
383
.10.1002/aic.690010317
13.
Borodulya
,
V. A.
, and
Ganzha
,
V. L.
,
1980
, “
Heat Transfer From In-Line and Staggered Horizontal Smooth Tube Bundles Immersed in a Fluidized Bed of Large Particles
,”
Int. J. Heat Mass Transfer
,
23
(11), pp.
1602
1604
.10.1016/0017-9310(80)90166-0
14.
Grewal
,
N. S.
,
1981
, “
A Generalized Correlation for Heat Transfer Between a Gas-Solid Fluidized Bed of Small Particles and an Immersed Array of Horizontal Tubes
,”
Powder Technol.
,
30
(
2
), pp.
145
154
.10.1016/0032-5910(81)80007-1
15.
Saxena
,
S. C.
,
1979
, “
Heat Transfer From a Bank of Immersed Horizontal Smooth Tubes in a Fluidized Bed
,”
Lett. Heat Mass Transfer
,
6
(
3
), pp.
225
229
.10.1016/0094-4548(79)90041-9
16.
Diaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
2001
, “
Dynamic Prediction and Control of Heat Exchangers Using Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
44
(
9
), pp.
1671
1679
.10.1016/S0017-9310(00)00228-3
17.
Kalogirou
,
S. A.
,
2000
, “
Applications of Artificial Neural-Networks for Energy Systems
,”
Appl. Energy
,
67
(
1–2
), pp.
17
35
.10.1016/S0306-2619(00)00005-2
18.
Rafiq
,
M. Y.
,
Bugmann
,
G.
, and
Easterbrook
,
D. J.
,
2001
, “
Neural Network Design for Engineering Applications
,”
Comput. Struct.
,
79
(
17
), pp.
1541
1552
.10.1016/S0045-7949(01)00039-6
19.
Rajasimman
,
M.
,
Govindarajan
,
L.
, and
Karthikeyan
,
C.
,
2007
, “
Artificial Neural Network Modeling of an Inverse Fluidized Bed Bioreactor
,”
J. Appl. Sci. Environ. Manage.
,
11
(
2
), pp.
65
69
.
20.
Kumar
,
A.
, and
Roy
,
G. K.
,
2004
, “
Artificial Neural Network Based Prediction of Bed Expansion Ratio in Gas-Solid Fluidized Beds With Disk and Blade Promoters
,”
IE (I) J.
,
85
, pp.
12
16
.
21.
Momenzadeh
,
L.
,
Zomorodian
,
A.
, and
Mowla
,
D.
,
2012
, “
Applying Artificial Neural Network for Drying Time prediction of Green Pea in Microwave-Assisted Fluidized Bed Dryer
,”
J. Agric. Sci. Technol.
,
14
, pp.
513
522
.
22.
Subramanian
,
N.
,
Saravanan
,
K.
, and
Deepa
,
P. N.
,
2013
, “
Drying Characteristics of Raagi Using Circulating Fluidized Bed
,”
Res. J. Chem. Sci.
,
3
(
1
), pp.
67
71
.
23.
Kharaajoo
,
M. J.
, and
Araabi
,
B. N.
,
2004
, “
Neural Network Based Predictive Control of a Heat Exchanger Nonlinear Process
,”
J. Elec. Electron. Eng.
,
4
(
2
), pp.
1219
1226
.
24.
Malhotra
,
K.
,
Mohan
,
C. K.
, and
Ranka
,
S.
,
1997
,
Elements of Artificial Neural Networks
,
2nd ed.
,
Penram International Publishing (India) Pvt. Ltd.
,
Mumbai
, Chap. 1.
25.
Tan
,
C. K.
,
Ward
,
J.
,
Wilcox
,
S. J.
, and
Payne
,
R.
,
2009
, “
Artificial Neural Network Modeling of the Thermal Performance of a Compact Heat Exchanger
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3609
3617
.10.1016/j.applthermaleng.2009.06.017
26.
Sahoo
,
A.
, and
Roy
,
G. K.
,
2007
, “
Artificial Neural Network Approach to Segregation Characteristic of Binary Homogeneous Mixtures in Promoted Gas Solid Fluidized Beds
,”
J. Powder Technol.
,
171
(
1
), pp.
54
62
.10.1016/j.powtec.2006.09.012
27.
Hayati
,
M.
,
Yousefi
,
T.
,
Ashjaee
,
M.
,
Hamidi
,
A.
, and
Shirvany
,
Y.
,
2007
, “
Application of Artificial Neural Networks for Prediction of Natural Convection Heat Transfer From a Confined Horizontal Elliptic Tube
,”
World Acad. Sci., Eng. Technol.
,
28
, pp.
269
274
.
You do not currently have access to this content.