In this study, the effects of pore to throat size ratio on the interfacial heat transfer coefficient for a periodic porous media containing inline array of rectangular rods are investigated, numerically. The continuity, Navier–Stokes, and energy equations are solved for the representative elementary volume (REV) of the porous media to obtain the microscopic velocity and temperature distributions in the voids between the rods. Based on the obtained microscopic temperature distributions, the interfacial convective heat transfer coefficients and the corresponding Nusselt numbers are computed. The study is performed for pore to throat size ratios between 1.63 and 7.46, porosities from 0.7 to 0.9, and Reynolds numbers between 1 and 100. It is found that in addition to porosity and Reynolds number, the parameter of pore to throat size ratio plays an important role on the heat transfer in porous media. For the low values of pore to throat size ratios (i.e., β = 1.63), Nusselt number increases with porosity while for the high values of pore to throat size ratios (i.e., β = 7.46), the opposite behavior is observed. Based on the obtained numerical results, a correlation for the determination of Nusselt number in terms of porosity, pore to throat size ratio, Reynolds and Prandtl numbers is proposed.

References

References
1.
Nakayama
,
A.
,
1995
,
PC-Aided Numerical Heat Transfer and Convective Flow
,
CRC Press
,
Boca Raton, FL
.
2.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
2nd ed.
,
Springer-Verlag
,
New York
.10.1007/978-1-4612-4254-3
3.
Kim
,
S. Y.
,
Koo
,
J. M.
, and
Kuznetsov
,
A. V.
,
2001
, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminium Foam Heat Sink
,”
Numer. Heat Transfer, Part A
,
40
(
1
), pp.
21
36
.10.1080/104077801300348851
4.
Whitaker
,
S.
,
1999
,
The Method of Volume Averaging
,
Kluwer Academic
,
Dordrecht, The Netherlands
.10.1007/978-94-017-3389-2
5.
Quintard
,
M.
, and
Whitaker
,
S.
,
1993
, “
One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems
,”
Adv. Heat Transfer
,
23
, pp.
369
464
.10.1016/S0065-2717(08)70009-1
6.
Quintard
,
M.
, and
Whitaker
,
S.
,
1995
, “
Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison With Numerical Experiments
,”
Int. J. Heat Mass Transfer
,
38
(
15
), pp.
2751
2759
.10.1016/0017-9310(95)00028-8
7.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
,
2001
, “
A Numerical Study of Interfacial Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1153
1159
.10.1016/S0017-9310(00)00166-6
8.
Nakayama
,
A.
,
Kuwahara
,
F.
,
Umemoto
,
T.
, and
Hayashi
,
T.
,
2002
, “
Heat and Fluid Flow Within an Anisotropic Porous Medium
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
746
753
.10.1115/1.1481355
9.
Saito
,
M. B.
, and
de Lemos
,
M. J. S.
,
2005
, “
Interfacial Heat Transfer Coefficient for Non-Equilibrium Convective Transport in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
32
(
5
), pp.
666
676
.10.1016/j.icheatmasstransfer.2004.06.013
10.
Saito
,
M. B.
, and
de Lemos
,
M. J. S.
,
2006
, “
A Correlation for Interfacial Heat Transfer Coefficient for Turbulent Flow Over an Array of Square Rods
,”
ASME J. Heat Transfer
,
128
(
5
), pp.
444
452
.10.1115/1.2175150
11.
Lopez Penha
,
D. J.
,
Stolz
,
S.
,
Kuerten
,
J. G. M.
,
Nordlund
,
M.
,
Kuczaj
,
A. K.
, and
Geurts
,
B. J.
,
2012
, “
Fully-Developed Conjugate Heat Transfer in Porous Media With Uniform Heating
,”
Int. J. Heat Fluid Flow
,
38
, pp.
94
106
.10.1016/j.ijheatfluidflow.2012.08.007
12.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
,
2008
, “
Numerical Study of Heat Transfer Over Banks of Rods in Small Reynolds Number Cross-Flow
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
853
864
.10.1016/j.ijheatmasstransfer.2007.04.038
13.
Alshare
,
A. A.
,
Strykowski
,
P. J.
, and
Simon
,
T. W.
,
2010
, “
Modeling of Unsteady and Steady Fluid Flow, Heat Transfer and Dispersion in Porous Media Using Unit Cell Scale
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2294
2310
.10.1016/j.ijheatmasstransfer.2009.11.001
14.
Teruel
,
F. E.
, and
Diaz
,
L.
,
2013
, “
Calculation of the Interfacial Heat Transfer Coefficient in Porous Media Employing Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
60
, pp.
406
412
.10.1016/j.ijheatmasstransfer.2012.12.022
15.
Petrasch
,
J.
,
Meier
,
F.
,
Friess
,
H.
, and
Steinfeld
,
A.
,
2007
, “
Tomography Based Determination of Permeability, Dupuit–Forchheimer Coefficient, and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
315
326
.10.1016/j.ijheatfluidflow.2007.09.001
16.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Hayashi
,
T.
,
2004
, “
Numerical Modeling for Three-Dimensional Heat and Fluid Flow Through a Bank of Cylinders in Yaw
,”
J. Fluid Mech.
,
498
, pp.
139
159
.10.1017/S0022112003006712
17.
Kim
,
S. Y.
, and
Kuznetsov
,
A. V.
,
2003
, “
Optimization of Pin-Fin Heat Sinks Using Anisotropic Local Thermal Nonequilibrium Porous Model in a Jet Impinging Channel
,”
Numer. Heat Transfer, Part A
,
44
(
8
), pp.
771
787
.10.1080/716100528
18.
Liu
,
D.
, and
Garimella
,
S. V.
,
2005
, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.10.1108/09615530510571921
19.
Ozgumus
,
T.
,
Mobedi
,
M.
, and
Ozkol
,
U.
,
2014
, “
Determination of Kozeny Constant Based on Porosity and Pore to Throat Size Ratio in Porous Medium With Rectangular Rods
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
2
), pp.
308
318
.
20.
Özgümüş
,
T.
,
Mobedi
,
M.
,
Özkol
,
Ü.
, and
Nakayama
,
A.
,
2013
, “
Thermal Dispersion in Porous Media—A Review on the Experimental Studies for Packed Beds
,”
ASME Appl. Mech. Rev.
,
65
(
3
), p.
031001
.10.1115/1.4024351
21.
Hsu
,
C. T.
,
2000
, “
Conduction in Porous Media
,”
Handbook of Porous Media
,
K.
Vafai
, ed.,
CRC Press
,
Boca Raton, FL
.
22.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corp.
,
New York
.
You do not currently have access to this content.