This article deals with the investigation of the effect of carbon nanotube (CNT) waviness on the effective thermal conductivities of a novel fuzzy fiber-reinforced composite (FFRC). The distinctive feature of the construction of this novel FFRC is that wavy CNTs are radially grown on the circumferential surfaces of the carbon fibers. Effective thermal conductivities of the FFRC are determined by developing the method of cells (MOCs) approach in conjunction with the effective medium (EM) approach. The effect of CNT waviness is studied when wavy CNTs are coplanar with either of the two mutually orthogonal planes of the carbon fiber. The present study reveals that (i) if CNT waviness is parallel to the carbon fiber axis then the axial (K1) and the transverse (K2) thermal conductivities of the FFRC are improved by 86% and 640%, respectively, over those of the base composite when the CNT volume faction present in the FFRC is 16.5% and the temperature is 400 K, (ii) the effective value of K1 of the FFRC containing wavy CNTs being coplanar with the carbon fiber axis is enhanced by 75% over that of containing straight CNTs for the fixed CNT volume faction when the temperature is 400 K, and (iii) the CNT/polymer matrix interfacial thermal resistance does not affect the effective thermal conductivities of the FFRC. The present work also reveals that for a particular value of the CNT volume fraction, optimum values of the CNT waviness parameters, such as the amplitude and the wave frequency of the CNT for improving the effective thermal conductivities of the FFRC can be estimated.

References

References
1.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
, and
Zettl
,
A.
,
1999
, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
59
(
4
), pp.
2514
2516
.10.1103/PhysRevB.59.R2514
2.
Che
,
J.
,
Cagin
,
T.
, and
Goddard
,
W. A.
, III
,
2000
, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
,
11
(
2
), pp.
65
69
.10.1088/0957-4484/11/2/305
3.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.10.1103/PhysRevLett.84.4613
4.
Lukes
,
J. R.
, and
Zhong
,
H.
,
2007
, “
Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
705
716
.10.1115/1.2717242
5.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
,
2002
, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2767
2769
.10.1063/1.1469696
6.
Nan
,
C. W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
,
2004
, “
Interface Effect on the Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
16
), pp.
3549
3551
.10.1063/1.1808874
7.
Bryning
,
M. B.
,
Milkie
,
D. E.
,
Islam
,
M. F.
,
Kikkawa
,
J. M.
, and
Yodh
,
A. G.
,
2005
, “
Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
,
87
(
16
), p.
161909
.10.1063/1.2103398
8.
Guthy
,
C.
,
Du
,
F.
,
Brand
,
S.
,
Winey
,
K. I.
, and
Fischer
,
J. E.
,
2007
, “
Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
1096
1099
.10.1115/1.2737484
9.
Haggenmueller
,
R.
,
Guthy
,
C.
,
Lukes
,
J. R.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
,
2007
, “
Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity
,”
Macromolecules
,
40
(
7
), pp.
2417
2421
.10.1021/ma0615046
10.
Silvain
,
J. F.
,
Vincent
,
C.
,
Heintz
,
J. M.
, and
Chandra
,
N.
,
2009
, “
Novel Processing and Characterization of Cu/CNF Nanocomposite for High Thermal Conductivity Applications
,”
Compos. Sci. Technol.
,
69
(
14
), pp.
2474
2484
.10.1016/j.compscitech.2009.06.023
11.
Cherkasova
,
A. S.
, and
Shan
,
J. W.
,
2010
, “
Particle Aspect-Ratio and Agglomeration-State Effects on the Thermal Conductivity of Aqueous Suspensions of Multiwalled Carbon Nanotubes
,”
ASME J. Heat Transfer
,
132
(
8
), p.
082402
.10.1115/1.4001364
12.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.10.1021/nn200847u
13.
Yamamoto
,
N.
,
Marconnet
,
A. M.
,
Duong
,
H. M.
,
Goodson
,
K. E.
, and
Wardle
,
B. L.
,
2011
, “
Non-Linear Thermal Conductivity Enhancement in Nanocomposites With Aligned-CNT Implementation
,”
18th International Conference on Composite Material (ICMM)
, Jeju, Korea.
14.
Kapadia
,
R. S.
,
Louie
,
B. M.
, and
Bandaru
,
P. R.
,
2014
, “
The Influence Carbon Nanotube Aspect Ratio on Thermal Conductivity Enhancement in Nanotube-Polymer Composites
,”
ASME J. Heat Transfer
,
136
(
1
), p.
011303
.10.1115/1.4025047
15.
Thostenson
,
E. T.
,
Ren
,
Z.
, and
Chou
,
T. W.
,
2001
, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
61
(
13
), pp.
1899
1912
.10.1016/S0266-3538(01)00094-X
16.
Wernik
,
J. M.
, and
Meguid
,
S. A.
,
2010
, “
Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
050801
.10.1115/1.4003503
17.
Thostenson
,
E. T.
,
Li
,
W. Z.
,
Wang
,
D. Z.
,
Ren
,
Z. F.
, and
Chou
,
T. W.
,
2002
, “
Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composites
,”
J. Appl. Phys.
,
91
(
9
), pp.
6034
6037
.10.1063/1.1466880
18.
Veedu
, V
. P.
,
Cao
,
A.
,
Li
,
X.
,
Ma
,
K.
,
Soldano
,
C.
,
Kar
,
S.
,
Ajayan
,
P. M.
, and
Ghasemi-Nejhad
,
M. N.
,
2006
, “
Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests
,”
Nat. Mater.
,
5
, pp.
457
462
.10.1038/nmat1650
19.
Garcia
,
E. J.
,
Wardle
,
B. L.
,
Hart
,
A. J.
, and
Yamamoto
,
N.
,
2008
, “
Fabrication and Multifunctional Properties of a Hybrid Laminate With Aligned Carbon Nanotubes Grown in Situ
,”
Compos. Sci. Technol.
,
68
(
9
), pp.
2034
2041
.10.1016/j.compscitech.2008.02.028
20.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2011
, “
Micromechanical Analysis of Fuzzy Fiber Reinforced Composites
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
149
166
.10.1007/s10999-011-9156-4
21.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2014
, “
Estimation of Thermal Conductivities of a Novel Fuzzy Fiber Reinforced Composite
,”
Int. J. Therm. Sci.
,
76
, pp.
90
100
.10.1016/j.ijthermalsci.2013.08.015
22.
Zhang
,
Q.
,
Huang
,
J. Q.
,
Zhao
,
M. Q.
,
Qian
,
W. Z.
,
Wang
,
Y.
, and
Wei
,
F.
,
2008
, “
Radial Growth of Vertically Aligned Carbon Nanotube Arrays From Ethylene on Ceramic Spheres
,”
Carbon
,
46
(
8
), pp.
1152
1158
.10.1016/j.carbon.2008.04.017
23.
Yamamoto
,
N.
,
Hart
,
A. J.
,
Garcia
,
E. J.
,
Wicks
,
S. S.
,
Duong
,
H. M.
,
Slocum
,
A. H.
, and
Wardle
,
B. L.
,
2009
, “
High-Yield Growth and Morphology Control of Aligned Carbon Nanotubes on Ceramic Fibers for Multifunctional Enhancement of Structural Composites
,”
Carbon
,
47
(
3
), pp.
551
560
.10.1016/j.carbon.2008.10.030
24.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2013
, “
Effect of Carbon Nanotube Waviness on the Elastic Properties of the Fuzzy Fiber Reinforced Composites
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021010
.10.1115/1.4007722
25.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2002
, “
Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,”
Appl. Phys. Lett.
,
80
(
24
), pp.
4647
4649
.10.1063/1.1487900
26.
Berhan
,
L.
,
Yi
,
Y. B.
, and
Sastry
,
A. M.
,
2004
, “
Effect of Nanorope Waviness on the Effective Moduli of Nanotube Sheets
,”
J. Appl. Phys.
,
95
(
9
), pp.
5027
5034
.10.1063/1.1687989
27.
Anumandla
,
V.
, and
Gibson
,
R. F.
,
2006
, “
A Comprehensive Closed Form Micromechanics Model for Estimating the Elastic Modulus of Nanotube-Reinforced Composites
,”
Composites, Part A
,
37
(
12
), pp.
2178
2185
.10.1016/j.compositesa.2005.09.016
28.
Tsai
,
C.
,
Zhang
,
C.
,
Jack
,
D. A.
,
Liang
,
R.
, and
Wang
,
B.
,
2011
, “
The Effect of Inclusion Waviness and Waviness Distribution on Elastic Properties of Fiber-Reinforced Composites
,”
Composites, Part B
,
42
(
1
), pp.
62
70
.10.1016/j.compositesb.2010.09.004
29.
Shen
,
L.
, and
Li
,
J.
,
2004
, “
Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
69
(
4
), p.
045414
.10.1103/PhysRevB.69.045414
30.
Prasher
,
R. S.
,
Hu
,
X. J.
,
Chalopin
,
Y.
,
Mingo
,
N.
,
Lofgreen
,
K.
,
Volz
,
S.
,
Cleri
,
F.
, and
Keblinski
,
P.
,
2009
, “
Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators
,”
Phys. Rev. Lett.
,
102
(
10
), p.
105901
.10.1103/PhysRevLett.102.105901
31.
Hsiao
,
H. M.
, and
Daniel
,
I. M.
,
1996
, “
Effect of Fiber Waviness on Stiffness and Strength Reduction of Unidirectional Composites Under Compressive Loading
,”
Compos. Sci. Technol.
,
56
(
5
), pp.
581
593
.10.1016/0266-3538(96)00045-0
32.
Hsiao
,
H. M.
, and
Daniel
, I
. M.
,
1996
, “
Elastic Properties of Composites With Fiber Waviness
,”
Composites, Part A
,
27
(
10
), pp.
931
941
.10.1016/1359-835X(96)00034-6
33.
Aboudi
,
J.
,
Arnold
,
S. M.
, and
Bednarcyk
,
B. A.
,
2012
,
Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach
,
Butterworth-Heinemann
,
Oxford, UK
.
34.
Hatta
,
H.
, and
Taya
,
M.
,
1985
, “
Effective Thermal Conductivity of a Misoriented Short Fiber Composite
,”
J. Appl. Phys.
,
58
(
7
), pp.
2478
2486
.10.1063/1.335924
35.
Cowin
,
S. C.
, and
Fraldi
,
M.
,
2005
, “
On Singularities Associated With the Curvilinear Anisotropic Elastic Symmetries
,”
Int. J. Nonlinear Mech.
,
40
(
2–3
), pp.
361
371
.10.1016/j.ijnonlinmec.2004.07.005
36.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
37.
Srivastava
,
I.
,
Sadasivam
,
S.
,
Smith
,
K. C.
, and
Fisher
,
T. S.
,
2013
, “
Combined Microstructure and Heat Conduction Modeling of Heterogeneous Interfaces and Materials
,”
ASME J. Heat Transfer
,
133
(
6
), p.
061603
.10.1115/1.4023583
38.
Wang
,
J. L.
,
Gu
,
M.
,
Ma
,
W. G.
,
Zhang
,
X.
, and
Song
,
Y.
,
2008
, “
Temperature Dependence of the Thermal Conductivity of Individual Pitch-Derived Carbon Fibers
,”
New Carbon Mater.
,
23
(
3
), pp.
259
263
.10.1016/S1872-5805(08)60029-3
39.
Reese
,
W.
,
1996
, “
Low-Temperature Thermal Conductivity of Amorphous Polymers: Polystyrene and Polymethylmethacrylate
,”
J. Appl. Phys.
,
37
(
2
), pp.
864
868
.10.1063/1.1708273
40.
Wilson
,
O. M.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2002
, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B
,
66
(
22
), p.
224301
.10.1103/PhysRevB.66.224301
You do not currently have access to this content.