It has recently been demonstrated that under certain conditions of electron nonequilibrium, electron to substrate energy coupling could represent a unique mechanism to enhance heat flow across interfaces. In this work, we present a coupled thermodynamic and quantum mechanical derivation of electron–phonon scattering at free electron metal/nonmetal substrate interfaces. A simplified approach to the Fermi's Golden Rule with electron energy transitions between only three energy levels is adopted to derive an electron–phonon diffuse mismatch model, that account for the electron–phonon thermal boundary conductance at metal/insulator interfaces increases with electron temperature. Our approach demonstrates that the metal-electron/nonmetal phonon conductance at interfaces can be an order of magnitude larger than purely phonon driven processes when the electrons are driven out of equilibrium with the phonons, consistent with recent experimental observations.

References

References
1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
2.
Luo
,
T.
, and
Chen
,
G.
,
2013
, “
Nanoscale Heat Transfer—From Computation to Experiment
,”
Phys. Chem. Chem. Phys.
,
15
, pp.
3389
3412
.10.1039/c2cp43771f
3.
Pop
,
E.
,
2010
, “
Energy Dissipation and Transport in Nanoscale Devices
,”
Nano Res.
,
3
(
3
), pp.
147
169
.10.1007/s12274-010-1019-z
4.
Kapitza
,
P. L.
,
1941
, “
The Study of Heat Transfer in Helium II
,”
J. Phys. USSR
,
4
(
181
), pp.
1
31
.
5.
Hopkins
,
P. E.
,
2013
, “
Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance
,”
ISRN Mech. Eng.
,
2013
, p.
682586
.10.1155/2013/682586
6.
Wilson
,
R. B.
, and
Cahill
,
D. G.
,
2012
, “
Experimental Validation of the Interfacial Form of the Wiedemann-Franz Law
,”
Phys. Rev. Lett.
,
108
, p.
255901
.10.1103/PhysRevLett.108.255901
7.
Hopkins
,
P. E.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
,
Kearney
,
S. P.
,
Grasser
,
T. W.
, and
Harris
,
C. T.
,
2010
, “
Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081302
.10.1115/1.4000993
8.
Gundrum
,
B. C.
,
Cahill
,
D. G.
, and
Averback
,
R. S.
,
2005
, “
Thermal Conductance of Metal-Metal Interfaces
,”
Phys. Rev. B
,
72
, p.
245426
.10.1103/PhysRevB.72.245426
9.
Clemens
,
B. M.
,
Eesley
,
G. L.
, and
Paddock
,
C. A.
,
1988
, “
Time-Resolved Thermal Transport in Compositionally Modulated Metal Films
,”
Phys. Rev. B
,
37
, pp.
1085
1096
.10.1103/PhysRevB.37.1085
10.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
, pp.
605
668
.10.1103/RevModPhys.61.605
11.
Norris
,
P. M.
, and
Hopkins
,
P. E.
,
2009
, “
Examining Interfacial Diffuse Phonon Scattering Through Transient Thermoreflectance Measurements of Thermal Boundary Conductance
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043207
.10.1115/1.3072928
12.
Stoner
,
R. J.
,
Maris
,
H. J.
,
Anthony
,
T. R.
, and
Banholzer
,
W. F.
,
1992
, “
Measurements of the Kapitza Conductance Between Diamond and Several Metals
,”
Phys. Rev. Lett.
,
68
, pp.
1563
1566
.10.1103/PhysRevLett.68.1563
13.
Stoner
,
R. J.
, and
Maris
,
H. J.
,
1993
, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
,
48
, pp.
16373
16387
.10.1103/PhysRevB.48.16373
14.
Little
,
W. A.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
(
3
), pp.
334
349
.10.1139/p59-037
15.
Huberman
,
M. L.
, and
Overhauser
,
A. W.
,
1994
, “
Electronic Kapitza Conductance at a Diamond-Pb Interface
,”
Phys. Rev. B
,
50
, pp.
2865
2873
.10.1103/PhysRevB.50.2865
16.
Sergeev
,
A. V.
,
1998
, “
Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering
,”
Phys. Rev. B
,
58
, pp.
R10199
R10202
.10.1103/PhysRevB.58.R10199
17.
Sergeev
,
A.
,
1999
, “
Inelastic Electron-Boundary Scattering in Thin Films
,”
Physica B
,
263–264
, pp.
217
219
.10.1016/S0921-4526(98)01338-6
18.
Grimvall
,
G.
,
1981
,
Selected Topics in Solid State Physics
,
North-Holland
,
New York
.
19.
Mahan
,
G. D.
,
2009
, “
Kapitza Thermal Resistance Between a Metal and a Nonmetal
,”
Phys. Rev. B
,
79
, p.
075408
.10.1103/PhysRevB.79.075408
20.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
, p.
144301
.10.1103/PhysRevB.73.144301
21.
Hopkins
,
P. E.
,
2009
, “
Effects of Electron-Boundary Scattering on Changes in Thermoreflectance in Thin Metal Films Undergoing Intraband Excitations
,”
J. Appl. Phys.
,
105
(
9
), p.
093517
.10.1063/1.3117486
22.
Hopkins
,
P. E.
,
Duda
,
J. C.
, and
Norris
,
P. M.
,
2011
, “
Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance
,”
ASME J. Heat Transfer
,
133
(
6
), p.
062401
.10.1115/1.4003549
23.
Duda
,
J. C.
,
Norris
,
P. M.
, and
Hopkins
,
P. E.
,
2011
, “
On the Linear Temperature Dependence of Phonon Thermal Boundary Conductance in the Classical Limit
,”
ASME J. Heat Transfer
,
133
(
7
), p.
074501
.10.1115/1.4003575
24.
Singh
,
P.
,
Seong
,
M.
, and
Sinha
,
S.
,
2013
, “
Detailed Consideration of the Electron-Phonon Thermal Conductance at Metal-Dielectric Interfaces
,”
Appl. Phys. Lett.
,
102
(
18
), p.
181906
.10.1063/1.4804383
25.
Majumdar
,
A.
, and
Reddy
,
P.
,
2004
, “
Role of Electron–Phonon Coupling in Thermal Conductance of Metal–Nonmetal Interfaces
,”
Appl. Phys. Lett.
,
84
(
23
), pp.
4768
4770
.10.1063/1.1758301
26.
Hopkins
,
P. E.
, and
Norris
,
P. M.
,
2007
, “
Substrate Influence in Electron-Phonon Coupling Measurements in Thin Au Films
,”
Appl. Surf. Sci.
,
253
(
15
), pp.
6289
6294
.10.1016/j.apsusc.2007.01.065
27.
Hopkins
,
P. E.
,
Kassebaum
,
J. L.
, and
Norris
,
P. M.
,
2009
, “
Effects of Electron Scattering at Metal-Nonmetal Interfaces on Electron-Phonon Equilibration in Gold Films
,”
J. Appl. Phys.
,
105
(
2
), p.
023710
.10.1063/1.3068476
28.
Guo
,
L.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
, and
Xu
,
X.
,
2012
, “
Heat Transfer Across Metal-Dielectric Interfaces During Ultrafast-Laser Heating
,”
ASME J. Heat Transfer
,
134
(
4
), p.
042402
.10.1115/1.4005255
29.
Ren
,
J.
, and
Zhu
,
J.-X.
,
2013
, “
Heat Diode Effect and Negative Differential Thermal Conductance Across Nanoscale Metal-Dielectric Interfaces
,”
Phys. Rev. B
,
87
, p.
241412
.10.1103/PhysRevB.87.241412
30.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Size Effects on Nonequilibrium Laser Heating of Metal Films
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
842
847
.10.1115/1.2911378
31.
Kaganov
,
M.
,
Lifshitz
, I
.
, and
Tanatarov
,
L. V.
,
1957
, “
Relaxation Between Electrons and the Crystalline Lattice
,”
Sov. Phys. JETP
,
4
(
2
), pp.
173
178
.
32.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perelman
,
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
Z. Eksp. Teor. Fiz.
,
66
, pp.
776
781
.
33.
Hohlfeld
,
J.
,
Wellershoff
,
S. S.
,
Gudde
,
J.
,
Conrad
,
U.
,
Jahnke
,
V.
, and
Matthias
,
E.
,
2000
, “
Electron and Lattice Dynamics Following Optical Excitation of Metals
,”
Chem. Phys.
,
251
(
1–3
), pp.
237
258
.10.1016/S0301-0104(99)00330-4
34.
Lin
,
Z.
,
Zhigilei
,
L. V.
, and
Celli
,
V.
,
2008
, “
Electron-Phonon Coupling and Electron Heat Capacity of Metals Under Conditions of Strong Electron-Phonon Nonequilibrium
,”
Phys. Rev. B
,
77
, p.
075133
.10.1103/PhysRevB.77.075133
35.
Mueller
,
B. Y.
, and
Rethfeld
,
B.
,
2013
, “
Relaxation Dynamics in Laser-Excited Metals Under Nonequilibrium Conditions
,”
Phys. Rev. B
,
87
, p.
035139
.10.1103/PhysRevB.87.035139
36.
Fann
,
W. S.
,
Storz
,
R.
,
Tom
,
H. W. K.
, and
Bokor
,
J.
,
1992
, “
Electron Thermalization in Gold
,”
Phys. Rev. B
,
46
, pp.
13592
13595
.10.1103/PhysRevB.46.13592
37.
Weber
,
W.
,
1977
, “
Adiabatic Bond Charge Model for the Phonons in Diamond, Si, Ge, and α—Sn
,”
Phys. Rev. B
,
15
, pp.
4789
4803
.10.1103/PhysRevB.15.4789
38.
Hopkins
,
P. E.
,
Beechem
,
T. E.
,
Duda
,
J. C.
,
Smoyer
,
J. L.
, and
Norris
,
P. M.
,
2010
, “
Effects of Subconduction Band Excitations on Thermal Conductance at Metal-Metal Interfaces
,”
Appl. Phys. Lett.
,
96
(
1
), p.
011907
.10.1063/1.3276908
39.
Duda
,
J. C.
,
Beechem
,
T. E.
,
Smoyer
,
J. L.
,
Norris
,
P. M.
, and
Hopkins
,
P. E.
,
2010
, “
Role of Dispersion on Phononic Thermal Boundary Conductance
,”
J. Appl. Phys.
,
108
(
7
), p.
073515
.10.1063/1.3483943
40.
Duda
,
J. C.
,
Hopkins
,
P. E.
,
Smoyer
,
J. L.
,
Bauer
,
M. L.
,
English
,
T. S.
,
Saltonstall
,
C. B.
, and
Norris
,
P. M.
,
2010
, “
On the Assumption of Detailed Balance in Prediction of Diffusive Transmission Probability During Interfacial Transport
,”
Nanoscale Microscale Thermophys. Eng.
,
14
(
1
), pp.
21
33
.10.1080/15567260903530379
41.
Sellan
,
D. P.
,
Turney
,
J. E.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
,
2010
, “
Cross-Plane Phonon Transport in Thin Films
,”
J. Appl. Phys.
,
108
(
11
), p.
113524
.10.1063/1.3517158
42.
Duda
,
J. C.
,
Yang
,
C.-Y. P.
,
Foley
,
B. M.
,
Cheaito
,
R.
,
Medlin
,
D. L.
,
Jones
,
R. E.
, and
Hopkins
,
P. E.
,
2013
, “
Influence of Interfacial Properties on Thermal Transport at Gold: Silicon Contacts
,”
Appl. Phys. Lett.
,
102
(
8
), p.
081902
.10.1063/1.4793431
43.
Hopkins
,
P. E.
,
Duda
,
J. C.
,
Kaehr
,
B.
,
Wang Zhou
,
X.
,
Peter Yang
,
C.-Y.
, and
Jones
,
R. E.
,
2013
, “
Ultrafast and Steady-State Laser Heating Effects on Electron Relaxation and Phonon Coupling Mechanisms in Thin Gold Films
,”
Appl. Phys. Lett.
,
103
(
21
), p.
211910
.10.1063/1.4833415
You do not currently have access to this content.