This paper presents a computational fluid dynamics (CFD) methodology to accurately predict the heat transfer characteristics of an unconfined steady impinging air jet in the transitional flow regime, impinging on a planar constant-temperature surface. The CFD methodology is validated using detailed experimental measurements of the local surface heat transfer coefficient. The numerical model employs a transitional turbulence model which captures the laminar–turbulent transition in the wall jet which precisely predicts the intensity and extent of the secondary peak in the radial Nusselt number distribution. The paper proposes a computationally low-cost turbulence model which yields the most accurate results for a wide range of operating and geometrical conditions. A detailed analysis of the effect of mesh grid size and properties, inflow conditions, turbulence model, and turbulent Prandtl number Prt is presented. The numerical uncertainty is quantified by the grid convergence index (GCI) method. In the range of Reynolds number 6000 ≤ Re ≤ 14,000 and nozzle-to-surface distance 1 ≤ H/D ≤ 6, the model is in excellent agreement with the experimental data. For the case of H/D = 1 and Re = 14,000, the maximum deviations are 5%, 3%, and 2% in terms of local, area-averaged and stagnation point Nusselt numbers, respectively. Experimental and numerical correlations are presented for the stagnation point Nusselt number.

References

1.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air-Jet Impingement Heat-Transfer at Low Nozzle Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
2.
Lee
,
J.
, and
Lee
,
S. S.
,
1999
, “
Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement
,”
Exp. Heat Transfer
,
12
(
2
), pp.
137
156
.10.1080/089161599269753
3.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
4.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
5.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat-Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
6.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer—Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(17–18), pp.
3291
3301
.10.1016/j.ijheatmasstransfer.2007.01.044
7.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer—Part II: A Temporal Investigation of Heat Transfer and Local Fluid Velocities
,”
Int. J. Heat Mass Transfer
,
50
(17–18), pp.
3302
3314
.10.1016/j.ijheatmasstransfer.2007.01.047
8.
Shadlesky
,
P. S.
,
1983
, “
Jet Impingement to a Plane Surface
,”
AIAA J.
,
21
(
8
), pp.
1214
1215
.10.2514/3.8231
9.
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2011
, “
A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3900
3908
.10.1016/j.ijheatmasstransfer.2011.04.037
10.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
,
2010
, “
Calibration of a Computational Model to Predict Mist/Steam Impinging Jets Cooling With an Application to Gas Turbine Blades
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122201
.10.1115/1.4002394
11.
Draksler
,
M.
, and
Koncar
,
B.
,
2009
, “
A Numerical Investigation on a Submerged, Axis-Symmetric Jet
,”
International Conference Nuclear Energy for New Europe 2009
,
Bled, Slovenia
, September 14–17, pp.
822.1
822.9
.
12.
Caggese
,
O.
,
Gnaegi
,
G.
,
Hannema
,
G.
,
Terzis
,
A.
, and
Ott
,
P.
,
2013
, “
Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet
,”
Int. J. Heat Mass Transfer
,
65
, pp.
873
882
.10.1016/j.ijheatmasstransfer.2013.06.043
13.
Hadziabdic
,
M.
, and
Hanjalic
,
K.
,
2008
, “
Vortical Structures and Heat Transfer in a Round Impinging Jet
,”
J. Fluid Mech.
,
596
, pp.
221
260
.10.1017/S002211200700955X
14.
Cziesla
,
T.
,
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Mitra
,
N. K.
,
2001
, “
Large-Eddy Simulation of Flow and Heat Transfer in an Impinging Slot Jet
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
500
508
.10.1016/S0142-727X(01)00105-9
15.
Kubacki
,
S.
, and
Dick
,
E.
,
2010
, “
Simulation of Plane Impinging Jets With k–ω Based Hybrid RANS/LES Models
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
862
878
.10.1016/j.ijheatfluidflow.2010.04.011
16.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2005
, “
Transition Modelling for General CFD Applications in Aeronautics
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 10–13,
AIAA
Paper No. 2005-522.10.2514/6.2005-522
17.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Voelker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables Part 1—Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
18.
Langtry
,
R. B.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes
,” Ph.D. thesis, Institute of Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart, Stuttgart, Germany
.
19.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Thermal Fluid Sci.
,
13
(
1
), pp.
71
80
.10.1016/0894-1777(96)00015-5
20.
Persoons
,
T.
,
Balgazin
,
K.
,
Brown
,
K.
, and
Murray
,
D. B.
,
2013
, “
Scaling of Convective Heat Transfer Enhancement Due to Flow Pulsation in an Axisymmetric Impinging Jet
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111012
.10.1115/1.4024620
21.
Valiorgue
,
P.
,
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2009
, “
Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
597
603
.10.1016/j.expthermflusci.2008.12.006
22.
Alimohammadi
,
S.
,
Persoons
,
T.
, and
Murray
,
D. B.
,
2014
, “
A Numerical–Experimental Study of Heat Transfer Enhancement Using Unconfined Steady and Pulsating Turbulent Air Jet Impingement
,”
15th International Heat Transfer Conference
(IHTC-15),
Kyoto, Japan
, August 10–15, Paper No. IHTC15–8765.
23.
Alimohammadi
,
S.
,
Persoons
,
T.
,
Murray
,
D. B.
,
Tehrani
,
M. S.
,
Farhanieh
,
B.
, and
Koehler
,
J.
,
2013
, “
A Validated Numerical-Experimental Design Methodology for a Movable Supersonic Ejector Compressor for Waste-Heat Recovery
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021001
.10.1115/1.4025090
24.
Vieser
,
T.
,
Esch
,
W.
, and
Menter
,
F.
,
2002
, “
Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models
,” CFX Technical Memorandum CFX: VAL 10/0602, ANSYS Inc., Canonsburg, PA.
25.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
26.
Gao
,
N.
, and
Ewing
,
D.
,
2006
, “
Investigation of the Effect of Confinement on the Heat Transfer to Round Impinging Jets Exiting a Long Pipe
,”
Int. J. Heat Fluid Flow
,
27
(1), pp.
33
41
.10.1016/j.ijheatfluidflow.2005.06.002
27.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modelling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
28.
Reynolds
,
A. J.
,
1976
, “
The Variation of Turbulent Prandtl and Schmidt Numbers in Wakes and Jets
,”
Int. J. Heat Mass Transfer
,
19
(7), pp.
757
764
.10.1016/0017-9310(76)90128-9
29.
Antonia
,
R. A.
, and
Kim
,
J.
,
1991
, “
Turbulent Prandtl Number in the Near-Wall Region of a Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
,
34
(
7
), pp.
1905
1908
.10.1016/0017-9310(91)90166-C
30.
Mayer
,
E.
, and
Divoky
,
D.
,
1966
, “
Correlation of Intermittency With Preferential Transport of Heat and Chemical Species in Turbulent Shear Flows
,”
AIAA J.
,
4
(
11
), pp.
1995
2000
.10.2514/3.3830
31.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1967
,
Heat and Mass Transfer in Boundary Layers
,
Morgan Grampian
,
London
.
32.
Browne
,
L. W. B.
, and
Antonia
,
R. A.
,
1983
, “
Measurements of Turbulent Prandtl Number in a Plane Jet
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
663
665
.10.1115/1.3245639
33.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.10.1115/1.2911398
34.
Kawamura
,
H.
,
Abe
,
H.
, and
Matsuo
,
Y.
,
1999
, “
DNS of Turbulent Heat Transfer in Channel Flow With Respect to Reynolds and Prandtl Number Effects
,”
Int. J. Heat Fluid Flow
,
20
(3), pp.
196
207
.10.1016/S0142-727X(99)00014-4
35.
Chidambaram
,
N.
,
Dash
,
S. M.
, and
Kenzakowski
,
D. C.
,
2001
, “
Scalar Variance Transport in the Turbulence Modelling of Propulsive Jets
,”
J. Propul. Power
,
17
(1), pp.
79
84
.10.2514/2.5710
36.
Churchill
,
S. W.
,
2002
, “
A Reinterpretation of the Turbulent Prandtl Number
,”
Ind. Eng. Chem. Res.
,
41
(
25
), pp.
6393
6401
.10.1021/ie011021k
You do not currently have access to this content.