This paper presents results from theoretical and numerical studies of a single-phase, temperature sensitive magnetic fluid operating under steady-state laminar flow conditions in a partially heated thermomagnetic circulation loop under the influence of an external magnetic field (created by a solenoid). A one-dimensional theoretical model has been developed using scaling arguments to characterize thermomagnetic circulation in this loop in terms of the geometric length scales, magnetic fluid properties, and the strength of the imposed magnetic field. In parallel to this theoretical analysis, supporting numerical simulations using Comsol Multiphysics simulation software have been undertaken to obtain data for use in this 1D model. Comparison between experimental data and numerical simulation results and also a grid sensitivity analysis was carried out to validate the numerical simulation. A correlation for the nondimensional heat transfer (Nusselt number) as a function of the appropriate magnetic Rayleigh number and a correlation for the mass flow rate based on the system's properties are developed.

References

References
1.
Zvirin
,
Y.
,
1981
, “
A Review of Natural Circulation Loops in Pressurized Water Reactors and other Systems
,”
Nucl. Eng. Design
,
67
, pp.
203
225
.10.1016/0029-5493(82)90142-X
2.
Vijayan
,
P. K.
, and
Austregesilo
,
H.
,
1994
, “
Scaling Laws for Single-Phase Natural Circulation Loops
,”
Nucl. Eng. Des.
,
152
, pp.
331
347
.10.1016/0029-5493(94)90095-7
3.
Ho
,
C. J.
,
Chiou
,
S. P.
, and
Hu
,
C. S.
,
1997
, “
Heat Transfer Characteristics of a Rectangular Natural Circulation Loop Containing Water Near Its Density Extreme
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3553
3558
.10.1016/S0017-9310(97)00007-0
4.
Karimi-Moghaddam
,
G.
,
Gould
,
R. D.
, and
Bhattacharya
,
S.
,
2012
, “
Numerical Investigation of Electronic Liquid Cooling Based on the Thermomagnetic Effect
,”
ASME
International Mechanical Engineering Congress and Exposition
, Houston, TX, November 9–15, pp.
1441
1447
, Paper No. IMECE2012-87764.10.1115/IMECE2012-87764
5.
Lian
,
W.
,
Xuan
,
Y.
, and
Li
,
Q.
,
2009
, “
Design Method of Automatic Energy Transport Devices Based on the Thermomagnetic Effect of Magnetic Fluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5451
5458
.10.1016/j.ijheatmasstransfer.2009.06.031
6.
Xuan
,
Y.
, and
Lian
,
W.
,
2011
, “
Electronic Cooling Using an Automatic Energy Transport Device Based on Thermomagnetic Effect
,”
Appl. Therm. Eng.
,
31
, pp.
1487
1494
.10.1016/j.applthermaleng.2011.01.033
7.
Li
,
Q.
,
Lian
,
W. L.
,
Sun
,
H.
, and
Xuan
,
Y. M.
,
2008
, “
Investigation on Operational Characteristics of a Miniature Automatic Cooling Device
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5033
5039
.10.1016/j.ijheatmasstransfer.2008.04.031
8.
Lian
,
W.
,
Li
,
Q.
, and
Xuan
,
Y. M.
,
2009
, “
Characterization of Miniature Automatic Energy Transport Devices Based on the Thermomagnetic Effect
,”
Energy Convers. Manage.
,
50
, pp.
35
42
.10.1016/j.enconman.2008.09.005
9.
Banerjee
,
S.
,
Mukhopadhyay
,
A.
,
Sen
,
S.
, and
Ganguly
,
R.
,
2009
, “
Thermomagnetic Convection in Square and Shallow Enclosures for Electronics Cooling
,”
Numer. Heat Transfer, Part A
,
55
, pp.
931
951
.10.1080/10407780902925440
10.
Banerjee
,
S.
,
Mukhopadhyay
,
A.
,
Sen
,
S.
, and
Ganguly
,
R.
,
2011
, “
The Effects of Magnetization Saturation on Thermomagnetic Convection in a Locally Heated Square Enclosure
,”
Numer. Heat Transfer, Part A
,
59
(9), pp.
693
718
.10.1080/10407782.2011.572758
11.
Niu
,
X. D.
,
Yamaguchi
,
H.
, and
Yoshikawa
,
K.
,
2009
, “
Lattice Boltzmann Model for Simulating Temperature-Sensitive Ferrofluids
,”
Phys. Rev. E
,
79
(
4
), p.
046713
.10.1103/PhysRevE.79.046713
12.
Banerjee
,
S.
,
Mukhopadhyay
,
A.
,
Sen
,
S.
, and
Ganguly
,
R.
,
2010
, “
Effects of the Dipole Position on Thermomagnetic Convection in a Locally Heated Shallow Enclosure: Thermodynamic and Transport Analysis
,”
Numer. Heat Transfer, Part A
,
57
(7), pp.
496
519
.10.1080/10407781003684316
13.
Mukhopadhyay
,
A.
,
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2005
, “
A Scaling Analysis to Characterize Thermomagnetic Convection
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3485
3492
.10.1016/j.ijheatmasstransfer.2005.03.021
14.
Suslov
,
S. A.
,
2008
, “
Thermomagnetic Convection in a Vertical Layer of Ferromagnetic Fluid
,”
Phys. Fluids
,
20
, p.
084101
.10.1063/1.2952596
15.
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2004
, “
Thermomagnetic Convection in a Square Enclosure Using a Line Dipole
,”
Phys. Fluids
,
16
(
7
), pp.
2228
2236
.10.1063/1.1736691
16.
Amirat
,
Y.
, and
Hamdache
,
K.
,
2012
, “
Heat Transfer in Incompressible Magnetic Fluid
,”
J. Math. Fluid Mech.
,
14
(
2
), pp.
217
247
.10.1007/s00021-011-0050-5
17.
Matsuki
,
H.
,
Yamasawa
,
K.
, and
Murakami
,
K.
,
1977
, “
Experimental Considerations on a New Automatic Cooling Device Using Temperature-Sensitive Magnetic Fluid
,”
IEEE Trans. Magn.
,
13
(
5
), pp.
1143
1145
.10.1109/TMAG.1977.1059679
18.
Strek
,
T.
, and
Jopek
,
H.
,
2007
, “
Computer Simulation of Heat Transfer Through a Ferrofluid
,”
Phys. Status Solidi B
,
24
(
3
), pp.
1027
1037
.10.1002/pssb.200572720
19.
Love
,
L. J.
,
Jansen
,
J. F.
,
McKnight
,
T. E.
,
Roh
,
Y.
,
Phelps
,
T. J.
,
Yeary
,
L. W.
, and
Cunningham
,
G. T.
,
2005
, “
Ferrofluid Field Induced Flow for Microfluidic Applications
,”
IEEE/ASME Trans. Mechatronics
,
10
(
1
), pp.
68
76
.10.1109/TMECH.2004.842224
20.
Karimi-Moghaddam
,
G.
,
2014
, “
Applications of Thermomagnetic Convection in Thermal Management of Electronic Systems
,” Ph.D. dissertation, North Carolina State University, Raleigh, NC.
21.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
22.
Aihara
,
T.
,
Kim
,
J. K.
,
Okuyama
,
K.
, and
Lasek
,
A.
,
1993
, “
Controllability of Convective Heat Transfer of Magnetic Fluid in a Circular Tube
,”
J. Magn. Mater.
,
122
, pp.
297
300
.10.1016/0304-8853(93)91095-O
23.
Bashtovoy
,
V. G.
,
Berkovsky
,
B. M.
, and
Vislovich
,
A. N.
,
1988
,
Introduction to Thermomechanics of Magnetic Fluids
,
Hemisphere
,
Washington, DC
, pp.
28
30
.
You do not currently have access to this content.