The effects of superhydrophobic surface and superhydrophobic and superhydrophilic hybrid surface on the fluid flow and heat transfer of oscillating heat pipes (OHPs) were investigated in the paper. The inner surfaces of the OHPs were hydrophilic surface (copper), hybrid surface (superhydrophilic evaporation and superhydrophobic condensation section), and uniform superhydrophobic surface, respectively. Deionized water was used as the working fluid. Experimental results showed that superhydrophobic surface influenced the slug motion and thermal performance of OHPs. Visualization results showed that the liquid-vapor interface was concave in the OHP with copper surface. A thin liquid film existed between the vapor plug and the wall of the OHP. On the contrary, the liquid-vapor interface took a convex profile in the OHP with superhydrophobic surface and the liquid-vapor interface contact line length in the hybrid surface OHP was longer than that in the uniform superhydrophobic surface OHP. The liquid slug movements became stronger in the hybrid surface OHPs as opposed to the copper OHP, while the global heat transfer performance of the hybrid surface OHPs increased by 5–20%. Comparing with the copper OHPs, the maximum amplitude and velocity of the liquid slug movements in the hybrid surface OHPs increased by 0–127% and 0–185%, respectively. However, the maximum amplitude and velocity of the liquid slug movements in the uniform superhydrophobic OHPs was reduced by 0–100% and 0–100%, respectively. The partial dryout phenomenon took place in OHPs with uniform superhydrophobic surface. The liquid slug movements became weaker and the thermal resistance was increased by 10–35% in the superhydrophobic surface OHPs.

References

References
1.
Lin
,
Z.
,
Wang
,
S.
,
Chen
,
J.
,
Huo
,
J.
,
Hua
,
Y.
, and
Zhang
,
W.
,
2011
, “
Experimental Study on Effective Range of Miniature Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
31
, pp.
880
886
.10.1016/j.applthermaleng.2010.11.009
2.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3951
3959
.10.1016/j.ijheatmasstransfer.2011.04.030
3.
Thompson
,
S. M.
, and
Ma
,
H. B.
,
2010
, “
Effect of Localized Heating on Three-Dimensional Flat-Plate Oscillating Heat Pipe
,”
Adv. Mech. Eng.
,
2010
, p.
465153
.10.1155/2010/465153
4.
Fumoto
,
K.
,
Kawaji
,
M.
, and
Kawanami
,
T.
,
2010
, “
Study on a Pulsating Heat Pipe With Self-Rewetting Fluid
,”
ASME J. Electron Packag.
,
132
, p.
031005
.10.1115/1.4001855
5.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2011
, “
Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
133
, p.
061502
.10.1115/1.4003546
6.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
, and
Ma
,
H. B.
,
2008
, “
Visual Observation of Oscillating Heat Pipes Using Neutron Radiography
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
366
372
.10.2514/1.33758
7.
Borgmeyer
,
B.
, and
Ma
,
H. B.
,
2007
, “
Experimental Investigation of Oscillating Motions in a Flat Plate Pulsating Heat Pipe
,”
J. Thermophys. Heat Transfer
,
21
(
2
), pp.
405
409
.10.2514/1.23263
8.
Lin
,
Z.
,
Wang
,
S.
,
Huo
,
J.
,
Hu
,
Y.
,
Chen
,
J.
,
Zhang
,
W.
, and
Lee
,
E.
,
2011
, “
Heat transfer Characteristics and LED Heat Sink Application of Aluminum Plate Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
31
, pp.
2221
2229
.10.1016/j.applthermaleng.2011.03.003
9.
Khandekar
,
S.
,
Dollinger
,
N.
, and
Groll
,
M.
,
2003
, “
Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study
,”
Appl. Therm. Eng.
,
23
, pp.
707
719
.10.1016/S1359-4311(02)00237-5
10.
Qu
,
W.
, and
Ma
,
H. B.
,
2007
, “
Theoretical Analysis of Startup of a Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2309
2316
.10.1016/j.ijheatmasstransfer.2006.10.043
11.
Liu
,
X.
,
Chen
,
Y.
, and
Shi
,
M.
,
2013
, “
Dynamic Performance Analysis on Start-Up of Closed-Loop Pulsating Heat Pipes (CLPHPs)
,”
Int. J. Therm. Sci.
,
65
, pp.
224
233
.10.1016/j.ijthermalsci.2012.10.012
12.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
,
2012
, “
Start-Up, Heat Transfer and Flow Characteristics of Silicon-Based Micro Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6109
6120
.10.1016/j.ijheatmasstransfer.2012.06.024
13.
Rose
,
J. W.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
2
), pp.
115
128
.10.1243/09576500260049034
14.
Lan
,
Z.
,
Ma
,
X. H.
,
Zhou
,
X. D.
, and H,
2009
, “
Theoretical Study of Dropwise Condensation Heat Transfer: Effect of the Liquid-Solid Surface Free Energy Difference
,”
J. Enhanced Heat Transfer
,
16
, pp.
61
71
.10.1615/JEnhHeatTransf.v16.i1.50
15.
Khandekar
,
S.
,
Schneider
,
M.
,
Schäfer
,
P.
,
Kulenovic
,
R.
, and
Groll
,
M.
,
2002
, “
Thermofluid Dynamic Study of Flat-Plate Closed-Loop Pulsating Heat Pipes
,”
Microscale Thermophys. Eng.
,
6
, pp.
303
317
.10.1080/10893950290098340
16.
Ji
,
Y.
,
Chen
,
H.-H.
,
Kim
,
Y. J.
,
Yu
,
Q.
,
Ma
,
X.
, and
Ma
,
H. B.
,
2012
, “
Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
134
, p.
074502
.10.1115/1.4006111
17.
Ji
,
Y.
,
Xu
,
C.
,
Ma
,
H.
, and
Xinxiang
,
P.
,
2013
, “
An Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Copper Oxide (CuO) Microstructure Layer on the Inner Surface
,”
ASME J. Heat Trans.
,
135
, p.
074504
.10.1115/1.4023749
18.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
, and
Zhao
,
Y.
,
2014
, “
Effects of Hydrophilic Surface on Heat Transfer Performance and Oscillating Motion for an Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
72
, pp.
50
65
.10.1016/j.ijheatmasstransfer.2014.01.007
19.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
89
109
.10.1146/annurev-fluid-121108-145558
20.
Aljallis
,
E.
,
Sarshar
,
M. A.
,
Datla
,
R.
,
Sikka
,
V.
,
Jones
,
A.
, and
Choi
,
C.-H.
,
2013
, “
Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow
,
" Phys. Fluids
,
25
(
2
), p.
025103
.10.1063/1.4791602
21.
Cubaud
,
T.
,
Ulmanella
,
U.
, and
Ho
,
C.-M.
,
2006
, “
Two-Phase Flow in Microchannels With Surface Modifications
,”
Fluid Dyn. Res.
,
38
, pp.
772
786
.10.1016/j.fluiddyn.2005.12.004
22.
Choi
,
C.
,
Shin
,
J. S.
,
Yu
,
D. I.
, and
Kim
,
M. H.
,
2011
, “
Flow Boiling Behaviors in Hydrophilic and Hydrophobic Microchannels
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
816
824
.10.1016/j.expthermflusci.2010.07.003
23.
Choi
,
C.
, and
Kim
,
M. H.
,
2008
, “
The Fabrication of a Single Glass Microchannel to Study the Hydrophobicity Effect on Two-Phase Flow Boiling of Water
,”
J. Micromech. Microeng.
,
18
, p.
105016
.10.1088/0960-1317/18/10/105016
24.
Liu
,
T. Y.
,
Li
,
P.
,
Liu
,
C.
, and
Gau
,
C.
,
2011
, “
Boiling Flow Characteristics in Microchannels With Very Hydrophobic Surface to Super-Hydrophilic Surface
,”
Int. J. Heat Mass Transfer
,
54
, pp.
126
134
.10.1016/j.ijheatmasstransfer.2010.09.060
25.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
, V
.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
26.
Groll
,
M.
, and
Khandekar
,
S.
,
2003
, “
Pulsating Heat Pipes: Progress and Prospects
,”
Proceedings of the International Conference on Energy and the Environment
, China.
27.
Qian
,
B.
, and
Shen
,
Z.
,
2006
, “
Super-Hydrophobic CuO Nanoflowers by Controlled Surface Oxidation on Copper
,”
J. Inorg. Mater.
,
21
(
3
), pp.
747
752
.10.3321/j.issn:1000-324X.2006.03.038
28.
Ma
,
H. B.
,
Cheng
,
P.
,
Borgmeyer
,
B.
, and
Wang
,
Y. X.
,
2008
, “
Fluid Flow and Heat Transfer in the Evaporating Thin Film Region
,”
Microfluid. Nanofluid.
,
4
, pp.
237
243
.10.1007/s10404-007-0172-5
You do not currently have access to this content.