A light and compact heat exchange system was realized using two air-to-refrigerant airfoil heat exchangers and a recirculated heat transport refrigerant. Its heat transfer performance was experimentally investigated. Carbon dioxide or water was used as a refrigerant up to a pressure of 30 MPa. Heat transfer coefficients on the outer air-contact and inner refrigerant-contact surfaces were calculated using an inverse heat transfer method. Correlations were developed for the Nusselt numbers of carbon dioxide and water on the inner refrigerant-contact surface. Furthermore, we proposed a method to evaluate a correction factor corresponding to the thermal resistance of the airfoil heat exchanger.

References

References
1.
Wilfert
,
G.
,
Kriegl
,
B.
,
Wald
,
L.
, and
Johanssen
,
O.
,
2005
, “
CLEAN—Validation of a GTF High Speed Turbine and Integration of Heat Exchanger Technology in an Environmental Friendly Engine Concept
,”
Proceedings of 17th International Symposium on Air Breathing Engines ISABE 2005
, Munich, ISABE-2005-1156.
2.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines. Part III: Engine Concepts for Reduced Emissions, Lower Fuel Consumption, and Noise Abatement
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
4
), pp.
408
426
.10.1108/00022660810882773
3.
Rolt
,
A. M.
, and
Baker
,
N. J.
,
2009
, “
Intercooled Turbofan Engine Design and Technology Research in the EU Framework 6 NEWAC Programme
,”
Proceedings of 18th International Symposium on Air Breathing Engines ISABE 2009
, Montreal, ISABE-2009-1278.
4.
Ito
,
Y.
, and
Nagasaki
,
T.
,
2011
, “
Suggestion of Intercooled and Recuperated Jet Engine Using Already Equipped Components as Heat Exchangers
,”
Proceedings of 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
, San Diego, Paper No. AIAA-2011-6102.
5.
Nealy
,
D. A.
,
Gladden
,
H. J.
,
Mihelc
,
M. S.
, and
Hylton
,
L. D.
,
1984
, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbine Power
,
106
(1), pp.
149
158
.10.1115/1.3239528
6.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.10.1016/0017-9310(96)00175-5
7.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2009
, “
A Bejan's Constructal Theory Approach to the Overall Optimization of Heat Exchanging Finned Modules With Air in Forced Convection and Laminar Flow Condition
,”
ASME J. Heat Transfer
,
131
(
8
), p.
081801
.10.1115/1.3109996
8.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2008
, “
Numerical Heat Transfer Optimisation in Modular Systems of Y-Shaped Fins
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081801
.10.1115/1.2927396
9.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2007
, “
A CFD Application to Optimize T-Shaped Fins: Comparisons to the Constructal Theory's Results
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
324
327
.10.1115/1.2756852
10.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2009
, “
Numerical Performance Analysis of Constructal I and Y Finned Heat Exchanging Modules
,”
ASME J. Electron. Packag.
,
131
(
3
), p.
031012
.10.1115/1.3144152
11.
Nishiyama
,
T.
,
1998
,
Yokugata Nagare Gaku
,
Nikkan Kogyo Shimbun Ltd.
(Business & Technology Daily News),
Tokyo
, p.
23
(translated as Aerodynamics of Airfoil), (in Japanese).
12.
Turner
,
A. B.
,
1971
, “
Local Heat Transfer Measurements on a Gas Turbine Blade
,”
J. Mech. Eng. Sci.
,
13
, pp.
1
12
.10.1243/JMES_JOUR_1971_013_003_02
13.
Dunavant
,
J. C.
,
Emery
,
J. C.
,
Walch
,
H. C.
, and
Westphal
,
W. R.
,
1955
, “
High-Speed Cascade Tests of the NACA 65-(12A10)10 and NACA 65-(12A2I8b)10 Compressor Blade Sections
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA RM L55I08.
14.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2011
, “
Bejan's Constructal Theory Analysis of Gas-Liquid Cooled Finned Modules
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071801
.10.1115/1.4003556
15.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2012
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Transfer
,
124
(3), pp.
413
420
.10.1115/1.1423906
16.
Erwin
,
J. R.
,
Savage
,
M.
, and
Emery
,
J. C.
,
1956
, “
Two-Dimensional Low-Speed Cascade Investigation of NACA Compressor Blade Sections Having a Systematic Variation in Mean-Line Loading
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA TN 3817.
17.
Ju
,
D. Y.
,
2002
, “
Residual Stress Formation during Casting: Continuous and Centrifugal Casting Processes
,”
Handbook of Residual Stress and Deformation of Steel
, G. Totten, M. Howes, and T. Inoue, eds.,
ASM International
, Materials Park, OH, pp.
372
390
.
18.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
19.
Vesovic
,
V.
,
Wakeham
,
W. A.
,
Oichowy
,
G. A.
,
Sengers
,
J. V.
,
Watson
,
J. T. R.
, and
Millat
,
J.
,
1990
, “
The Transport Properties of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
763
808
.10.1063/1.555875
20.
JSME Data Book,
1983
,
ThermoPhysical Properties of Fluids
,
Japan Society of Mechanical Engineers
, Tokyo.
21.
Pinilla
,
V.
,
Solano
,
J. P.
,
Paniagua
,
G.
, and
Anthony
,
R. J.
,
2012
, “
Adiabatic Wall Temperature Evaluation in a High Speed Turbine
,”
ASME J. Heat Transfer
,
134
(9), p.
091601
.10.1115/1.4006313
22.
Holman
,
J. P.
,
2009
,
Heat Transfer of International Edition
,
McGraw-Hill
,
New York
, pp.
26
37
.
23.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
24.
ALGLIB, 2013, (www.alglib.net), Sergey Bochkanov.
25.
Ainley
,
D. G.
,
1953
, “
An Experimental Single-Stage Air-Cooled Turbine, Part II. Research on the Performance of a Type of Internally Air-Cooled Turbine Blade
,”
Proc. Inst. Mech. Eng.
,
167
, pp.
351
370
.10.1243/PIME_PROC_1953_167_040_02
26.
Fray
,
D. E.
, and
Barnes
,
J. F.
,
1965
,
An Experimental High-Temperature Turbine (No. 126), Part I—The Cooling Performance of a Set of Extruded Air-Cooled Turbine Blades
, Vol.
3405
,
Aeronautical Research Council
,
London
.
27.
Hodge
,
R. I.
,
1960
,
A Turbine Cascade Studies, Part I and II
, Vols.
492, 493
,
Aeronautical Research Council
,
London
.
28.
Wilson
,
D. G.
, and
Pope
,
J. A.
,
1954
, “
Convective Heat Transfer to Gas Turbine Blade Surfaces
,”
Proc. Inst. Mech. Eng.
,
168
, pp.
861
876
.10.1243/PIME_PROC_1954_168_078_02
29.
Andrews
,
S. J.
, and
Bradley
,
P. C.
,
1957
,
Heat Transfer to Turbine Blade
, Vol.
294
,
Aeronautical Research Council
,
London
.
30.
Freche
,
J. C.
, and
Diaguila
,
A. J.
,
1950
, “
Heat-Transfer and Operating Characteristics of Aluminum Forced-Convection Water-Cooled Single-Stage Turbines
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA RM E50D03a.
You do not currently have access to this content.