In the present study, laminar pulsating flow over a backward-facing step in the presence of a square obstacle placed behind the step is numerically studied to control the heat transfer and fluid flow. The working fluid is air with a Prandtl number of 0.71 and the Reynolds number is varied from 10 and 200. The study is performed for three different vertical positions of the square obstacle and different forcing frequencies at the inlet position. Navier–Stokes and energy equation for a 2D laminar flow are solved using a finite-volume-based commercial code. It is observed that by properly locating the square obstacle the length and intensity of the recirculation zone behind the step are considerably affected, and hence, it can be used as a passive control element for heat transfer augmentation. Enhancements in the maximum values of the Nusselt number of 228% and 197% are obtained for two different vertical locations of the obstacle. On the other hand, in the pulsating flow case at Reynolds number of 200, two locations of the square obstacle are effective for heat transfer enhancement with pulsation compared to the case without obstacle.

References

1.
Saldana
,
J. G. B.
, and
Anand
,
N. K.
,
2008
, “
Flow Over a Three-Dimensional Horizontal Forward-Facing Step
,”
Numer. Heat Transfer, Part A
,
53
, pp.
1
17
.10.1080/10407780701446473
2.
Iwai
,
H.
,
Nakabe
,
K.
, and
Suzuki
,
K.
,
2000
, “
Flow and Heat Transfer Characteristics of Backward-Facing Step Laminar Flow in a Rectangular Duct
,”
Int. J. Heat Mass Transfer
,
43
, pp.
457
471
.10.1016/S0017-9310(99)00140-4
3.
Saldana
,
J. G. B.
,
Anand
,
N. K.
, and
Sarin
,
V.
,
2005
, “
Numerical Simulation of Mixed Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step
,”
ASME J. Heat Transfer
,
127
(9), pp.
1027
1036
.10.1115/1.2005272
4.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2013
, “
Numerical Analysis of Laminar Pulsating Flow at a Backward-Facing Step With an Upper Wall Mounted Adiabatic Thin Fin
,”
Comput. Fluids
,
88
, pp.
93
107
.10.1016/j.compfluid.2013.08.013
5.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
Effect of a Rotating Cylinder in Forced Convection of Ferrofluid Over a Backward-Facing Step
,”
Int. J. Heat Mass Transfer
,
71
, pp.
142
148
.10.1016/j.ijheatmasstransfer.2013.12.042
6.
Abu-Mulaweh
,
H.
,
2003
, “
A Review of Research on Laminar Mixed Convection Flow Over Backward- and Forward Facing Steps
,”
Int. J. Therm. Sci.
,
42
, pp.
897
909
.10.1016/S1290-0729(03)00062-0
7.
Nie
,
J.
, and
Armaly
,
B.
,
2004
, “
Convection in Laminar Three-Dimensional Separated Flow
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5407
5416
.10.1016/j.ijheatmasstransfer.2004.07.030
8.
Barkley
,
D.
,
Gomes
,
M. G. M.
, and
Henderson
,
R. D.
,
2002
, “
Three-Dimensional Instability in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
473
, pp.
167
190
.10.1017/S002211200200232X
9.
Stuer
,
H.
,
Gyr
,
A.
, and
Kinzelbach
,
W.
,
1999
, “
Laminar Separation on a Forward Facing Step
,”
Eur. J. Mech. B/Fluids
,
18
, pp.
675
692
.10.1016/S0997-7546(99)00104-1
10.
Abu-Mulaweh
,
H.
,
2005
, “
Turbulent Mixed Convection Flow Over a Forward-Facing Step—The Effect of Step Heights
,”
Int. J. Therm. Sci.
,
44
, pp.
155
162
.10.1016/j.ijthermalsci.2004.08.001
11.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereier
,
J. C. F.
, and
Schonung
,
B.
,
1983
, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
,
127
, pp.
473
496
.10.1017/S0022112083002839
12.
Terhaar
,
S.
,
Velazquez
,
A.
,
Arias
,
J.
, and
Sanchez-Sanz
,
M.
,
2010
, “
Experimental Study on the Unsteady Laminar Heat Transfer Downstream of a Backwards Facing Step
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
457
462
.10.1016/j.icheatmasstransfer.2010.01.009
13.
Sherry
,
M.
,
LoJacono
,
D.
, and
Sheridan
,
J.
,
2010
, “
An Experimental Investigation of the Recirculation Zone Formed Downstream of a Forward Facing Step
,”
J. Wind Eng. Ind. Aerodyn.
,
98
, pp.
888
894
.10.1016/j.jweia.2010.09.003
14.
Habib
,
M.
,
Said
,
S.
,
Al-Farayedhi
,
A.
,
Al-Dini
,
S.
,
Asghar
,
A.
, and
Gbadebo
,
S.
,
1999
, “
Heat Transfer Characteristics of Pulsated Turbulent Pipe Flow
,”
Heat Mass Transfer
,
34
, pp.
413
421
.10.1007/s002310050277
15.
Velazquez
,
A.
,
Arias
,
J.
, and
Mendez
,
B.
,
2008
, “
Laminar Heat Transfer Enhancement Downstream of A Backward-Facing Step by Using a Pulsating Flow
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2075
2089
.10.1016/j.ijheatmasstransfer.2007.06.009
16.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2014
, “
Numerical Study and Identification of Cooling of Heated Blocks in Pulsating Channel Flow With a Rotating Cylinder
,”
Int. J. Therm. Sci.
,
79
, pp.
132
145
.10.1016/j.ijthermalsci.2014.01.010
17.
Khanafer
,
K.
,
Al-Azmi
,
B.
,
Al-Shammari
,
A.
, and
Pop
,
I.
,
2008
, “
Mixed Convection Analysis of Laminar Pulsating Flow and Heat Transfer Over a Backward-Facing Step
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5785
5793
.10.1016/j.ijheatmasstransfer.2008.04.060
18.
Mackley
,
M.
, and
Stonestreet
,
P.
,
1995
, “
Heat Transfer and Associated Energy Dissipation for Oscillatory Flow in Baffled Tubes
,”
Chem. Sci. Eng.
,
50
, pp.
2211
2224
.10.1016/0009-2509(95)00088-M
19.
Hemida
,
H.
,
Sabry
,
M.
,
Abdel-Rahim
,
A.
, and
Mansour
,
H.
,
2002
, “
Theoretical Analysis of Heat Transfer in Laminar Pulsating Flow
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1767
1780
.10.1016/S0017-9310(01)00274-5
20.
Oztop
,
H. F.
,
Mushatet
,
K. S.
, and
Yilmaz
,
I.
,
2012
, “
Analysis of Turbulent Flow and Heat Transfer Over a Double Forward Facing Step With Obstacles
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
1395
1403
. 10.1016/j.icheatmasstransfer.2012.07.011
21.
Yilmaz
,
I.
, and
Oztop
,
H. F.
,
2006
, “
Turbulence Forced Convection Heat Transfer Over Double Forward Facing Step Flow
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
508
517
.10.1016/j.icheatmasstransfer.2005.08.015
22.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2013
, “
Identification of Forced Convection in Pulsating Flow at a Backward-Facing Step With A Stationary Cylinder Subjected to Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
111
121
.10.1016/j.icheatmasstransfer.2013.04.016
23.
Kumar
,
A.
, and
Dhiman
,
A. K.
,
2012
, “
Effect of a Circular Cylinder on Separated Forced Convection at a Backward-Facing Step
,”
Int. J. Therm. Sci.
,
52
, pp.
176
185
.10.1016/j.ijthermalsci.2011.09.014
24.
Fluent Inc.
,
2005
,
FLUENT User's Guide
, Lebanon, NH.
25.
Acharya
,
S.
,
Dixit
,
G.
, and
Hou
,
Q.
,
1993
, “
Laminar Mixed Convection in a Vertical Channel With A Backstep: A Benchmark Study
,”
ASME HTD
,
258
, pp.
11
20
.
26.
Lin
,
J.
,
Armaly
,
B.
, and
Chen
,
T.
,
1990
, “
Mixed Convection in Buoyancy-Assisted Vertical Backward-Facing Step Flows
,”
Int. J. Heat Mass Transfer
,
33
, pp.
2121
2132
.10.1016/0017-9310(90)90114-A
27.
Dyne
,
B.
,
Pepper
,
D.
, and
Brueckner
,
F.
,
1993
, “
Mixed Convection in a Vertical Channel With a Backward-Facing Step
,”
ASME HTD
,
258
, pp.
49
56
.
28.
El-Refaee
,
M.
,
El-Sayed
,
M.
,
Al-Najem
,
N.
, and
Megahid
,
I.
,
1996
, “
Steady-State Solutions of Buoyancy-Assisted Internal Flows Using a Fast False Implicit Transient Scheme (FITS)
,”
Int. J. Numer. Methods Heat Fluid Flow
,
6
, pp.
3
23
.10.1108/09615539610131235
29.
Cochran
,
R.
,
Horstman
,
R.
,
Sun
,
Y.
, and
Emery
,
A.
,
1993
, “
Benchmark Solution for a Vertical Buoyancy-Assisted Laminar Backward-Facing Step Flow Using Finite Element, Finite Volume and Finite Difference Methods
,”
ASME HTD
,
258
, pp.
37
47
.
30.
Kaiktsis
,
L.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
,
1991
, “
Onset of Three-Dimensionality, Equilibria, and Early Transition in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
231
, pp.
501
528
.10.1017/S0022112091003488
You do not currently have access to this content.