Saturation pool boiling experiments of degassed PF-5060 dielectric liquid investigated nucleate boiling on 13 Cu surfaces with average roughness, Ra, of 0.039 (smooth polished) to 1.79 μm at six inclination angles, θ, from 0 deg (upward facing) to 180 deg (downward facing). Values of the nucleate boiling heat transfer coefficient, hNB, in the upward facing orientation increase with increasing surface roughness and are correlated in terms of the applied heat flux, q: hNB = A qB. The exponent “B” decreases from 0.81 to 0.69 as Ra increases from 0.039 to 1.79 μm, while the coefficient “A” increases with Ra to the power 0.24. The values of the maximum heat transfer coefficient, hMNB, which occurs near the end of the fully developed nucleate boiling region, increase with increasing Ra and decreasing inclination angle. In the upward facing orientation, hNB increases by ∼58% with increasing Ra from 0.134 to 1.79 μm, while hMNB increases by more than 150% compared with that on smooth-polished Cu. Values of hMNB in the downward facing orientation are ∼40% of those in the upward facing orientation.

References

1.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
, pp.
969
976
.
2.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transfer
,
13
, pp.
657
666
.10.1016/0017-9310(70)90040-2
3.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” University of California, Los Angeles and Ramo-Wooldridge Corporation, Technical Report No. AECU-4439.
4.
Judd
,
R.
, and
Hwang
,
K.
,
1976
, “
A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation
,”
ASME J. Heat Transfer
,
98
, pp.
623
629
.10.1115/1.3450610
5.
Kutatelatze
,
S.
, and
Gogonin
,
I.
,
1980
, “
Growth Rate and Detachment Diameter of a Vapor Bubble in Free Convection Boiling of a Saturated Liquid
,”
High Temperature
,
17
, pp.
667
671
.
6.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
,
1982
,
Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
, (Memoirs of the Faculty of Engineering, Vol. 42), Kyushu University, Fukuoka, Kyushu, Japan, pp.
95
111
.
7.
Wang
,
C. H.
, and
Dhir
,
V. D.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Saturated Water
,”
ASME J. Heat Transfer
,
115
, pp.
659
669
.10.1115/1.2910737
8.
Qi
,
Y.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2004
, “
Role of Surface Structure in Heterogeneous Nucleation
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3097
3107
.10.1016/j.ijheatmasstransfer.2004.02.019
9.
Gorenflo
,
D.
,
Chandra
,
U.
,
Kotthoff
,
S.
, and
Luke
,
A.
,
2004
, “
Influence of Thermophysical Properties on Pool Boiling Heat Transfer of Refrigerants
,”
Int. J. Refrigeration
,
27
, pp.
492
502
.10.1016/j.ijrefrig.2004.03.004
10.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
),
p. 112009
.10.1115/1.3220144
11.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2013
, “
Nucleate Boiling From Smooth and Rough Surfaces
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
456
476
.10.1016/j.expthermflusci.2012.08.006
12.
Luke
,
A.
,
2006
, “
Preparation, Measurement and Analysis of the Microstructure of Evaporator Surfaces
,”
Int. J. Therm. Sci.
,
45
, pp.
237
256
.10.1016/j.ijthermalsci.2005.03.018
13.
Luke
,
A.
,
1997
, “
Pool Boiling Heat Transfer From Horizontal Tubes With Different Surface Roughness
,
Int. J. Refrig.
,
20
, pp.
561
574
.10.1016/S0140-7007(97)00062-5
14.
Jabardo
,
J. M.
,
2010
, “
An Overview of Surface Roughness Effects on Nucleate Boiling Heat Transfer
,”
Open Transp. Phenom. J.
,
2
, pp.
24
34
.
15.
Hosseini
,
R.
,
Gholaminejad
,
A.
, and
Nabil
,
M.
,
2011
, “
Concerning the Effect of Surface Material on Nucleate Boiling Heat Transfer of R-113
,”
Electron. Cool. Therm. Control
,
1
, pp.
22
27
.10.4236/jectc.2011.12003
16.
Danilova
,
G. N.
, and
Bel'skii
,
V. K.
,
1965
, “
Study of Heat Transfer on Boiling of Freon 113 and Freon 12 on Pipes of Differing Roughness
,”
Kholod. Tekh.
,
4
, pp.
24
28
.
17.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Poll Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.10.1016/S0065-2717(08)70205-3
18.
Kozitskii
,
V. I.
,
1971
, “
Heat Transfer Coefficients for Boiling of n-Butane on Surfaces of Various Roughness
,”
Chem. Pet. Eng.
,
8
(
1
), pp.
23
24
.10.1007/BF01144436
19.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
20.
Ribatski
,
G.
, and
Jabardo
,
J. M.
,
2003
, “
Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4439
4451
.10.1016/S0017-9310(03)00252-7
21.
Wenzel
,
R. N.
,
1949
, “
Surface Roughness and Contact Angle
,”
J. Phys. Colloidal Chem.
,
53
(
9
), pp.
1466
1467
.10.1021/j150474a015
22.
Nakae
,
H.
,
Inui
,
R.
,
Hirata
,
Y.
, and
Saito
,
H.
,
1998
, “
Effect of Surface Roughness on Wettability
,”
Acta Mater.
,
46
(
7
), pp.
2313
2318
.10.1016/S1359-6454(97)00387-X
23.
Hong
,
K. T.
,
Imadojemu
,
H.
, and
Webb
,
R. L.
,
1994
, “
Effect of Oxidation and Surface Roughness on Contact Angle
,”
Exp. Therm. Fluid Sci.
,
8
, pp
279
285
.10.1016/0894-1777(94)90058-2
24.
3M
,
2013
,
Performance Fluid PF-5060, Products Information
, http://www.3m.com/electronicmaterials
25.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2008
, “
Nucleate Boiling of FC-72 and HFE-7100 on Porous Graphite at Different Orientations and Liquid Subcooling
,”
Energy Convers. Manage.
,
49
, pp.
733
750
.10.1016/j.enconman.2007.07.028
26.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiphase Flow
,
36
, pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
27.
El-Genk
,
M. S.
,
2012
, “
Nucleate Boiling Enhancements on Porous Graphite and Micro-Porous and Macro-Finned Copper Surfaces
,”
Heat Transfer Eng.
,
33
(
3
), pp.
175
204
.10.1080/01457632.2011.589305
28.
Chang
,
J. Y.
, and
You
,
S. M.
,
1996
, “
Heater Orientation Effects on Pool Boiling on Micro-Porous Enhanced Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
118
, pp.
937
943
.10.1115/1.2822592
29.
Rainey
,
K. N.
, and
You
,
S. M.
,
2000
, “
Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
122
, pp.
509
516
.10.1115/1.1288708
30.
Jung
,
J.-Y.
, and
Kwak
,
H.-Y.
,
2006
, “
Effect of Surface Condition on Boiling Heat Transfer From Silicon Chip With Submicron-Scale Roughness
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4543
4551
.10.1016/j.ijheatmasstransfer.2006.03.045
31.
Pioro
,
I. L.
,
Rohsenow
,
W. M.
, and
Doerffer
,
S. S.
,
2005
, “
Nucleate Pool-Boiling Heat Transfer II: Assessment of Prediction Methods
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5045
5057
.10.1016/j.ijheatmasstransfer.2004.06.020
32.
El–Genk
,
M. S.
, and
Bostanci
,
H.
,
2003
, “
Saturation Boiling of HFE–7100 From a Copper Surface, Simulating a Microelectronic Chip
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1841
1854
.10.1016/S0017-9310(02)00489-1
33.
Kline
,
S. J.
,
1985
, “
The Purposes of Uncertainty Analysis
,”
ASME Fluids Eng.
,
107
(
2
), pp.
153
160
.10.1115/1.3242449
34.
Anderson
,
T. M.
, and
Mudawar
,
I.
,
1989
, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
752
759
.10.1115/1.3250747
You do not currently have access to this content.