It is well known that a phase transition from liquid to vapor occurs in the thermal boundary layer adjacent to a nanoparticle that has a high temperature upon irradiation with a high-power laser. In this study, the mechanism by which the evaporated layer adjacent to a laser-irradiated nanoparticle can grow as a bubble was investigated through detailed calculations. The pressure of the evaporated liquid volume due to heat diffusion from the irradiated nanoparticle was estimated using a bubble nucleation model based on molecular interactions. The bubble wall motion was obtained using the Keller-Miksis equation. The density and temperature inside the bubble were obtained by solving the continuity and energy equation for the vapor inside the bubble. The evaporation of water molecules or condensation of water vapor at the vapor–liquid interface and the homogeneous nucleation of vapor were also considered. The calculated bubble radius-time curve for the bubble formed on the surface of a gold particle with a diameter of 9 nm is close to the experimental result. Our study reveals that an appropriate size of the evaporated liquid volume and a large expansion velocity are important parameters for the formation of a transient nanosized bubble. The calculation result suggests that homogeneous condensation of vapor rather than condensation at the interface occurs.

References

References
1.
Apfel
,
R. E.
,
1972
, “
Water Superheated to 279.5 °C at Atmospheric Pressure
,”
Nat. Phys. Sci.
,
238
, pp.
63
64
.10.1038/physci238063a0
2.
Blander
,
M.
, and
Katz
,
J.
,
1975
, “
Bubble Nucleation in Liquids
,”
AIChE J.
,
21
, pp.
833
848
.10.1002/aic.690210502
3.
Shepherd
,
J. E.
, and
Sturtevant
,
B.
,
1982
, “
Rapid Evaporation at the Superheat Limit
,”
J. Fluid Mech.
,
121
, pp.
379
402
.10.1017/S0022112082001955
4.
Kwak
,
H.
,
Oh
,
S.
, and
Park
,
C.
,
1995
, “
Bubble Dynamics on the Evolving Bubble Formed From the Droplet at the Superheat Limit
,”
Int. J. Heat Mass Transfer
,
38
, pp.
1709
1718
.10.1016/0017-9310(94)00273-X
5.
Felix
,
M. P.
, and
Ellis
,
E. T.
,
1971
, “
Laser-Induced Liquid Breakdown. A Step by Step Account
,”
Appl. Phys. Lett.
,
19
, pp.
484
486
.10.1063/1.1653783
6.
Lauterborn
,
W.
,
1972
, “
High-Speed Photography of Laser-Induced Breakdown in Liquid.
Appl. Phys. Lett.
,
21
, pp.
27
29
.10.1063/1.1654204
7.
Afanas'ev
,
Yu. V.
, and
Krokhin
,
O. N.
,
1967
, “
Vaporization of Matter Exposed to Laser Emission
,”
Sov. Phys., JETP
,
25
, pp.
639
645
.
8.
Prishivalko
,
A. P.
,
1983
, “
Heating and Destruction of Water Drops on Exposure to Radiation With Inhomogeneous Internal Heat Evolution
,”
Soviet Phys. J.
,
26
, pp.
142
148
.10.1007/BF00891580
9.
Baghdassarian
,
O.
,
Tabbert
,
B.
, and
Williams
,
G. A.
,
1999
, “
Luminescence Characteristics of Laser-Induced Bubbles in Water
,”
Phys. Rev. Lett.
,
83
, pp.
2437
2440
.10.1103/PhysRevLett.83.2437
10.
Avedisian
,
C. T.
,
Osborne
,
W. S.
,
McLeod
,
F. D.
, and
Curley
,
C. M.
,
1999
, “
Measuring Bubble Nucleation Temperature on the Surface of a Rapidly Heated Thermal Ink-Jet Heater Immersed in a Pool of Water
,”
Proc. R. Soc. London Ser A
,
455
, pp.
3875
3899
.10.1098/rspa.1999.0481
11.
Lee
,
J. Y.
,
Park
,
H. C.
,
Jung
,
J. Y.
, and
Kwak
,
H.
,
2003
, “
Bubble Nucleation on Micro Line Heater
,”
ASME J. Heat. Trans.
,
125
, pp.
687
692
.10.1115/1.1571844
12.
Kotaidis
,
V.
,
Dahmen
,
C.
,
von Plessen
,
G.
,
Springer
,
F.
, and
Plech
,
A.
,
2006
, “
Excitation of Nanoscale Vapor Bubbles at the Surface Of Gold Nanoparticles in Water
,”
J. Chem. Phys.
,
124
, p.
184702
.10.1063/1.2187476
13.
Lapotko
,
D.
,
2009
, “
Optical Excitation and Detection of Vapor Bubbles Around Plasmonic Nanoparticles
,”
Opt. Express
,
17
, pp.
2538
2556
.10.1364/OE.17.002538
14.
Siems
,
A.
,
Weber
,
S. A.
,
Boneberg
,
J.
, and
Plech
,
A.
,
2011
, “
Thermodynamics of Nanosecond Nanobubble Formation at Laser-Excited Metal Nanoparticles
,”
New J. Phys.
,
13
, p.
043018
.10.1088/1367-2630/13/4/043018
15.
Pitsillides
,
C. M.
,
Joe
,
E. K.
,
Wei
,
X.
,
Anderson
,
R. R.
, and
Lin
,
C. P.
,
2003
, “
Selective Cell Targeting With Light-Absorbing Microparticles and Nanoparticles
,”
Bio. Phys.
,
84
, pp.
4023
4032
. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302982/
16.
Zharov
,
V. P.
,
Galitovsky
,
V.
, and
Viegas
,
M.
,
2003
, “
Photothermal Detection of Local Thermal Effects During Selective Nanophotothermolysis
,”
Appl. Phys. Lett.
,
83
, pp.
4897
4899
.10.1063/1.1632546
17.
Lang
,
F.
,
Leiderer
,
P.
, and
Georgiou
,
S.
,
2004
, “
Phase Transition Dynamics Measurements in Superheated Liquids by Monitering the Ejection of Nanometer-Thick Films
,”
Appl. Phys. Lett.
,
85
, pp.
2759
2761
.10.1063/1.1803618
18.
Lawson
,
C. M.
,
Euliss
,
G. W.
, and
Michael
,
R. R.
,
1991
, “
Nanosecond Laser-Induced Cavitation in Carbon Microparticle Suspensions: Applications in Nonlinear Interface Switching
,”
Appl. Phys. Lett.
,
58
, pp.
2195
2197
.10.1063/1.104924
19.
Dou
,
Y.
,
Zhigilei
,
L. V.
,
Winogad
,
N.
, and
Garrison
,
B. J.
,
2001
, “
Explosive Boiling of Wrater Films Adjacent to Heated Surfaces: A Microscopic-Description
,”
J. Phys. Chem. A
,
105
, pp.
2748
2755
.10.1021/jp003913o
20.
Kwak
,
H.
, and
Panton
,
R. L.
,
1985
, “
Tensile Strength of Simple Liquids Predicted by a Model of Molecular Interactions
,”
J. Phys. D: Appl. Phys.
,
18
, pp.
647
659
.10.1088/0022-3727/18/4/009
21.
Kwak
,
H.
, and
Panton
,
R. L.
,
1983
, “
Gas Bubble Formation in Nonequilibrium Water-Gas Solutions
,”
78
, pp.
5795
5799
.
22.
Feynman
,
R. P.
,
1972
,
Statistical Mechanics
,
W.A. Benjamin
,
New York
, p.
125
.
23.
Strewieser
,
A.
, and
Heatchcock
,
C. H.
,
1981
,
Introduction to Organic Chemistry
,
Macmillan
,
London
, p.
147
.
24.
Fowkes
,
F. M.
,
1963
, “
Additivity of Intermolecular Forces at Interfaces: Determination of the Contribution to Surface and Interfacial Tensions of Dispersion Forces in Various Liquids
,”
J. Phys. Chem.
,
67
, pp.
2538
2541
.
25.
Kwak
,
H.
, and
Lee
,
S.
,
1991
, “
Homogeneous Bubble Nucleation Predicted by Molecular Interaction Model
,”
ASME J. Heat Trans.
,
113
, pp.
714
721
.10.1115/1.2910622
26.
Kotaidis
,
V.
, and
Plech
,
A.
,
2005
, “
Cavitation Dynamics on the Nanoscale
,”
Appl. Phys. Lett.
,
87
, p.
213102
.10.1063/1.2132086
27.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammit
,
F. G.
,
1972
,
Cavitation
,
McGraw-Hill
,
New York
, p.
121
.
28.
Lee
,
Y. P.
,
Karng
,
S. W.
,
Jeon
,
J.
, and
Kwak
,
H.
,
1997
, “
Shock Pulse From a Sonoluminescing Gas Bubble
,”
J. Phys. Soc. Jpn.
,
66
, pp.
2537
2540
.10.1143/JPSJ.66.2537
29.
Hirschfelder
,
J. O.
,
Curtis
,
C. F.
, and
Bird
,
R. B.
,
1954
,
Molecular Theory of Gases and Liquids
,
John Wiley & Sons
,
New York
, p.
271
.
30.
Keller
,
J. B.
, and
Miksis
,
M.
,
1980
, “
Bubble Oscillations of Large Amplitude
,”
J. Acoust. Soc. Am.
,
68
, pp.
628
633
.10.1121/1.384720
31.
Yasui
,
K.
,
1995
, “
Efects of Thermal Conduction on Bubble Dynamics Near the Sonoluminescence Threshold
,”
J. Acoust. Soc. Am.
,
98
, pp.
2772
2782
.10.1121/1.413242
32.
Wu
,
C. C.
, and
Roberts
,
P. H.
,
1993
, “
Shock-Wave Propagation in a Sonoluminescing Gas Bubble
,”
Phys. Rev. Lett.
,
70
, pp.
3424
3427
.10.1103/PhysRevLett.70.3424
33.
Kwak
,
H.
, and
Na
,
J.
,
1996
, “
Hydrodynamic Solutions for a Sonoluminescing Gas Bubble
,”
Phys. Rev. Lett.
,
77
, pp.
4454
4457
.10.1103/PhysRevLett.77.4454
34.
Kwak
,
H.
, and
Na
,
J.
,
1997
, “
Physical Processes for Single Bubble Sonoluminescence
,”
J. Phys. Soc, Jpn.
,
66
, pp.
3074
3083
.10.1143/JPSJ.66.3074
35.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
,
1965
,
Introduction to Physical Gas Dynamics
,
Robert E. Krieger Publishing Co.
,
New York
.
36.
Kwak
,
H.
, and
Yang
,
H.
,
1995
, “
An Aspect of Sonoluminescence From Hydrodynamic Theory
,”
J. Phys. Soc. Jpn.
,
64
, pp.
1980
1992
.10.1143/JPSJ.64.1980
37.
Finch
,
R. D.
, and
Neppiras
,
E. A.
,
1973
, “
Vapor Bubble Dynamics
,”
J. Acoust. Soc. Am.
,
53
, pp.
1402
1410
.10.1121/1.1913485
38.
Theofanous
,
T.
,
Biasi
,
L.
, and
Isbin
,
H. S.
,
1969
, “
A Theoretical Study on Bubble Growth in Constant and Time-Dependant Pressure Fields
,”
Chem. Eng. Sci.
,
24
, pp.
885
897
.10.1016/0009-2509(69)85008-6
39.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interface Mass Transfer
,
Columbia University Press, New York
.
40.
Goldenberg
,
H.
, and
Tanner
,
C. J.
,
1952
, “
Heat Flow in An Infinite Medium Heated by a Sphere
,”
Brit. J. Appl. Phys.
,
3
, pp.
296
298
.10.1088/0508-3443/3/9/307
41.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase Change Phenomena
,
Hemisphere Publishing Co.
,
Washington
, DC.
42.
Abraham
,
F. F.
,
1974
,
Homogeneou Nucleation Theory
,
Academic Press
, New York.
43.
Talanquer
,
V.
, and
Oxtoby
,
W.
,
1994
, “
Dynamical Density Functional Theory of Gas-Liquid Nucleation
,”
J. Chem. Phys.
,
100
, pp.
5190
5200
.10.1063/1.467183
44.
Lin
,
C. P.
, and
Kelly
,
M. W.
,
1998
, “
Cavitation and Acoustic Emission Around Laser Heated Microparticles
,”
Appl. Phys. Lett.
,
72
, pp.
2800
2802
.10.1063/1.121462
45.
Govorov
,
A.
,
Zhang
,
W.
,
Skeini
,
T.
,
Richardson
,
H.
,
Lww
,
J.
, and
Kotov
,
N. A.
,
2006
, “
Gold Nanoparticle Ensembles as Heaters and Actuators: Melting and Collective Plasmon Resonances
,”
Nanoscale Res. Lett.
,
1
, pp.
84
90
.10.1007/s11671-006-9015-7
You do not currently have access to this content.