Silicon is the primary material of integrated circuit (IC) manufacturing in microelectronic industry. It has high thermal conductivity and superior thermomechanical properties compatible to most semiconductors. These characteristics make it an ideal material for fabricating micro/mini heat pipes and their wick structures. In this article, silicon wick structures, composed of cylindrical pillars 320 μm in height and 30–100 μm in diameter, are developed for studies of phase change capability. Fabrication of the silicon wick structures utilizes the standard microelectromechanical systems (MEMS) approach, which allows the precise definition on the wick dimensions, as well as the heated wick area. On these bases, experimental characterizations of temperature variations versus input heat fluxes, associated with simultaneous visualization on the liquid transport and the dryout, are performed to investigate the wick dimensional effects on the maximum phase change capability. On the wick structure with the pillar diameter/pores of 100 μm and a heated wick area of 2 mm × 2 mm, the phase change reached a maximum heat flux of 1130 W/cm2. Despite of the liquid bottom-feed approach, interactions between liquid and vapor phases enables the heated wick structure absorb liquid from its surrounding wick area, including from its top side with a longer liquid transport path. In contrast, a wick structure with fine pillars (10 μm in diameter) inhibited the generation of nucleate boiling. Evaporation on the meniscus interface becomes the major phase change mechanism. A large heated wick area (4 mm × 4 mm) increases the viscous loss in transporting liquid to wet the entire wick, advancing the dryout at 135 W/cm2. Mass transfer analysis, as well as discussion of the experimental results, indicates that a dimensional ratio r/l (pillar diameter/characteristic length of the heated wick area) is a key parameter in determining the maximum phase change capability. A low r/l ratio enhances heat and mass transport capability, as well as heat transfer coefficient.

References

References
1.
Peterson
,
G. P.
,
Duncan
,
A. B.
, and
Weichold
,
M. H.
,
1993
, “
Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers
,”
ASME J. Heat Transfer
,
115
, pp.
751
756
.10.1115/1.2910747
2.
Ivanova
,
M.
,
Schaeffer
,
C.
,
Avenas
,
Y.
,
Laï
,
A.
, and
Gillot
,
C.
,
2003
, “
Realization and Thermal Analysis of Silicon Thermal Spreaders Used in Power Electronics Cooling
,”
IEEE ICTC
,
Maribor, Slovenia
, pp.
1124
1129
.
3.
Gillot
,
C.
,
Avenas
,
Y.
,
Cézac
,
N.
,
Poupon
,
G.
,
Schaeffer
,
C.
, and
Fournier
,
E.
,
2003
, “
Silicon Heat Pipes Used as Thermal Spreaders
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
332
339
.10.1109/TCAPT.2003.815092
4.
Ivanova
,
M.
,
Laï
,
A.
,
Gillot
,
C.
,
Sillon
,
N.
,
Schaeffer
,
C.
,
Lefevre
,
F.
,
Lallemand
,
M.
, and
Fournier
,
E.
, Design,
2006
, “
Fabrication and Test of Silicon Heat Pipes With Radial Microcapillary Grooves
,” Itherm’06, pp.
545
551
.
5.
Hamdan
,
M.
,
Cytrynowicz
,
D.
,
Medis
,
P.
,
Shuja
,
A.
,
Gerner
,
F. M.
,
Henderson
,
H. T.
,
Golliher
,
E.
,
Mellott
,
K.
, and
Moore
,
C.
,
2002
, “
Loop Heat pipe (LHP) Development by Utilizing Coherent Porous Silicon (CPS) Wicks
,” Itherm’02, pp.
457
465
6.
Berre
,
M.
Le,
Launay
,
S.
,
Sartre
,
V.
, and
Lallemand
,
M.
,
2003
, “
Fabrication and Experimental Investigation of Silicon Micro Heat Pipes for Cooling Electronics
,”
J. Micromech. Microeng.
,
13
, pp.
436
441
.10.1088/0960-1317/13/3/313
7.
Lips
,
S.
,
Bonjour
,
J.
, and
Lefevre
,
F.
,
2010
, “
Investigation of Evaporation and Condensation Processes Specific to Grooved Flat Heat Pipes
,”
Front. Heat Pipes
,
1
, p.
023001
.10.5098/fhp.v1.2.3001
8.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
London
.
9.
Cai
,
Q.
,
Chen
,
B.
, and
Tsai
,
C.
,
2012
, “
Design, Development and Tests of High Performance Silicon Vapor Chamber
,”
J. Micromech. Microeng.
,
22
, p.
035009
.10.1088/0960-1317/22/3/035009
10.
Vityaz
,
P. A.
,
Konev
,
S. K.
,
Medvedev
,
V. B.
, and
Sheleg
,
V. K.
,
1984
, “
Heat Pipes With Bidispersed Capillary Structures
,”
Proceedings of 5th International Heat Pipe Conference
, Vol.
1
, pp.
127
135
.
11.
Semenic
,
T.
, and
Catton
,
I.
,
2009
, “
Experimental Study of Biporous Wicks for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5113
5121
.10.1016/j.ijheatmasstransfer.2009.05.005
12.
Reilly
,
S. W.
, and
Catton
,
I.
,
2009
, “
Improving Biporous Heat Transfer by Addition of Monoporous Interface Layer
,”
Proceedings of the ASME 2009 Heat Transfer Summer Conference
, Paper No. HT2009-88257.
13.
Cao
,
X. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
,
2002
, “
Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures
,”
J. Thermophys. Heat Transfer
,
16
(
4
), pp.
547
552
.10.2514/2.6730
14.
Wang
,
J.
, and
Catton
,
I.
,
2004
, “
Vaporization Heat Transfer in Biporous Wicks of Heat Pipe Evaporators
,”
Proceedings of 13th International Heat Pipe Conference
, Vol.
2
, pp.
76
86
.
15.
Cai
,
Q.
, and
Chen
C. L.
,
2010
, “
Design and Test of Carbon Nanotube Biwick Structure for High-Heat-Flux Phase Change Heat Transfer
,”
ASME J. Heat Transfer
,
132
, p.
052403
.10.1115/1.4000469
16.
Weibel
,
J. A.
,
Garimella
,
S. V.
, and
North
,
M. T.
,
2010
, “
Characterization of Evaporation and Boiling From Sintered Powder Wicks Fed by Capillary Action
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4204
4215
.10.1016/j.ijheatmasstransfer.2010.05.043
17.
Cai
,
Q.
, and
Bhunia
,
A.
,
2012
, “
High Heat Flux Phase Change on Porous Carbon Nanotube Structures
,”
Int. J. Heat Mass Transfer
,
55
, pp.
5544
5551
.10.1016/j.ijheatmasstransfer.2012.05.027
You do not currently have access to this content.