A nonisothermal medium is modeled using the multilayer approach in which the continuous temperature distribution in a one-dimensional system as modeled as being piecewise constant. This has been shown to provide accurate results for a surprisingly small number of layers. Analysis is performed on a nonisothermal gray medium to attempt to characterize the ways in which the errors introduced by the multilayer modeling change with various physical parameters namely, the optical thickness and the temperature or emissive power gradient. A demonstration is made of how the multisource k-distribution method is capable of evaluating the heat flux within a one-dimensional system with piecewise constant temperature distribution with line-by-line accuracy with a significant decrease in computational expense. The k-distribution method for treating the spectral properties of an absorbing–emitting medium represents a powerful alternative to line-by-line calculations by reducing the number of radiative transfer equation (RTE) evaluations from the order of a million to the order of 10 without any significant loss of accuracy. For problems where an appropriate reference temperature can be defined, the k-distribution method is formally exact. However, when no appropriate reference temperature can be defined, the method results in errors. The multisource k-distribution method extends the k-distribution method to problems with piecewise constant temperature and optical properties.

References

References
1.
Buckius
,
R. O.
, and
Lee
,
H.
,
1986
, “
Combined Mode Heat Transfer Analysis Utilizing Radiation Scaling
,”
ASME J. Heat Transfer
,
108
, pp.
626
632
.10.1115/1.3246982
2.
Lee
,
H. S.
,
Menart
,
J. A.
, and
Fakheri
,
A.
,
1990
, “
Multilayer Radiation Solution for Boundary-Layer Flow of Gray Gases
,”
AIAA J. Thermophys. Heat Transfer
,
4
, pp.
180
185
.10.2514/3.161
3.
Kim
,
T. K.
,
Menart
,
J. A.
, and
Lee
,
H. S.
,
1991
, “
Nongray Radiative Gas Analysis Using the S–N Techniques
,”
ASME J. Heat Transfer
,
113
, pp.
945
952
.10.1115/1.2911226
4.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2008
, “
Multilayer Modeling of Radiative Transfer by SLW and CW Methods in Non-Isothermal Gaseous Medium
,”
J. Quant. Spectrosc. Radiative Transfer
,
109
, pp.
245
257
.10.1016/j.jqsrt.2007.08.015
5.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
The Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
,
115
, pp.
1004
1012
.10.1115/1.2911354
6.
Maurente
,
A.
,
Franca
,
F. H. R.
,
Miki
,
K.
, and
Howell
,
J. R.
,
2012
, “
Application of Approximations for Joint Cumulative k-Distributions for Mixtures to FSK Radiation Heat Transfer in Multi-Component High Temperature Non-LTE Plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
,
113
, pp. 1521–1535.10.1016/j.jqsrt.2012.03.018
7.
Modest
,
M. F.
, and
Zhang
,
H.
,
2000
, “
The Full Spectrum Correlated-k Distribution and Its Relationship to the Weighted-Sum-of-Gray-Gases Method
,” IMECE, ASME, Orlando, FL, pp.
75
84
.
8.
Modest
,
M. F.
, and
Zhang
,
H.
,
2002
, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer
,
124
,
p. 30
38
.10.1115/1.1418697
9.
Lacis
,
A. A.
, and
Oinas
,
V.
,
1991
, “
A Description of the Correlated-k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres
,”
J. Geophys. Res.
,
96
, pp.
9027
9063
.10.1029/90JD01945
10.
Goody
,
R.
,
West
,
R.
,
Chen
,
L.
, and
Crisp
,
D.
,
1989
, “
The Correlated-k Method for Radiation Calculations in Nonhomogeneous Atmospheres
,”
J. Quant. Spectrosc. Radiat. Transfer
,
42
, pp.
539
550
.10.1016/0022-4073(89)90044-7
11.
Riviere
,
Ph.
,
Soufiani
,
A.
, and
Taine
,
J.
,
1992
, “
Correlated-k and Fictitious Gas Methods for H2O Near 2.7 mm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
48
, pp.
187
203
.10.1016/0022-4073(92)90088-L
12.
Riviere
,
Ph.
,
Soufiani
,
A.
, and
Taine
,
J.
,
1995
, “
Correlated-k and Fictitious Gas Model for H2O Infrared Radiation in the Voigt Regime
,”
J. Quant. Spectrosc. Radiat. Transfer
,
53
, pp.
335
346
.10.1016/0022-4073(95)90064-0
13.
Taine
,
J.
, and
Soufiani
,
A.
,
1999
, “
Gas IR Radiative Properties: From Spectroscopic Data to Approximate Models
,”
Adv. Heat Transfer
,
33
, pp.
295
414
.10.1016/S0065-2717(08)70306-X
14.
Pal
,
G.
,
Modest
,
M. F.
, and
Wang
,
L.
,
2008
, “
Hybrid Full-Spectrum Correlated k-Distribution Method for Radiative Transfer in Strongly Nonhomogeneous Gas Mixtures
,”
ASME J. Heat Transfer
,
130
, p.
082701
.10.1115/1.2909612
15.
Zhang
,
H.
, and
Modest
,
M. F.
,
2003
, “
Scalable Multi-Group Full-Spectrum Correlated-k Distributions for Radiative Transfer Calculations
,”
ASME J. Heat Transfer
,
125
, pp.
454
461
.10.1115/1.1560156
16.
Tencer
,
J. T.
, and
Howell
,
J. R.
,
2012
, “
A Multi-Source Full Spectrum K-Distribution Method for 1-D Inhomogeneous Media
,” EUROTHERM SEMINAR No. 95 Computational Thermal Radiation in Participating Media IV, Nancy, France.
17.
Rothman
,
L. S.
,
Jacquemart
,
D.
,
Barbe
,
A.
,
Benner
,
D. C.
,
Birk
,
M.
,
Brown
,
L. R.
,
Carleer
,
M. R.
,
Chackerian
,
C.
, Jr.
,
Chance
,
K.
,
Couder
,
L. H.
,
Dana
,
V.
,
Devi
,
V. M.
,
Flaud
,
J. M.
,
Gamache
,
R. R.
,
Godman
,
A.
,
Hartmann
,
J. M.
,
Jucks
,
K. W.
,
Maki
,
A. G.
,
Mandin
,
J. Y.
,
Massie
,
S. T.
,
Orphal
,
J.
,
Perrin
,
A.
,
Rinsland
,
C. P.
,
Smith
,
M. A. H.
,
Tennysn
,
J.
,
Tolchenv
,
R. N.
,
Toth
,
R. A.
,
Auwera
,
J. V.
,
Varanasi
,
P.
, and
Wagner
,
G.
,
2005
, “
The HITRAN 2004 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
96
, pp.
139
204
.10.1016/j.jqsrt.2004.10.008
You do not currently have access to this content.