The entropy generation due to mixed convective heat transfer of nanofluids past a rotating circular cylinder placed in a uniform cross stream is investigated via streamline upwind Petrov–Galerkin based finite element method. Nanosized copper (Cu) particles suspended in water are used with Prandtl number (Pr) = 6.9. The computations are carried out at a representative Reynolds number (Re) of 100. The dimensionless cylinder rotation rate, α, is varied between 0 and 2. The range of nanoparticle volume fractions (ϕ) considered is 0 ≤ ϕ ≤ 5%. Effect of aiding buoyancy is brought about by considering two fixed values of the Richardson number (Ri) as 0.5 and 1.0. A new model for predicting the effective viscosity and thermal conductivity of dilute suspensions of nanoscale colloidal particles is presented. The model addresses the details of the agglomeration–deagglomeration in tune with the pertinent variations in the effective particulate dimensions, volume fractions, as well as the aggregate structure of the particulate system. The total entropy generation is found to decrease sharply with cylinder rotation rates and nanoparticle volume fractions. Increase in nanoparticle agglomeration shows decrease in heat transfer irreversibility. The Bejan number falls sharply with increase in α and ϕ.

References

References
1.
Chang
,
K. S.
, and
Sa
,
J. Y.
,
1990
, “
The Effect of Buoyancy on Vortex Shedding in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
220
, pp.
253
266
.10.1017/S002211209000324X
2.
Singh
,
S.
,
Biswas
,
G.
, and
Mukhopadhyay
,
A.
,
1998
, “
Effect of Thermal Buoyancy on the Flow Through a Vertical Channel With a Built-In Circular Cylinder
,”
Numer. Heat Transfer A.
,
34
, pp.
769
789
.10.1080/10407789808914015
3.
Lecordier
,
J. C.
,
Browne
,
L. W. B.
,
Masson
,
S. L.
,
Dumouchel
,
F.
, and
Paranthoen
,
P.
,
2000
, “
Control of Vortex Shedding by Thermal Effect at Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
21
, pp.
227
237
.10.1016/S0894-1777(00)00007-8
4.
Shi
,
J. M.
,
Gerlach
,
D.
,
Breuer
,
M.
,
Biswas
,
G.
, and
Durst
,
F.
,
2004
, “
Heating Effect on Steady and Unsteady Horizontal Laminar Flow of Air Past a Circular Cylinder
,”
Phys. Fluids
,
16
, pp.
4331
4345
.10.1063/1.1804547
5.
Sarkar
,
S.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2011
, “
Unsteady Wake Dynamics and Heat Transfer in Forced and Mixed Convection Past a Circular Cylinder in Cross Flow for High Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3536
3551
.10.1016/j.ijheatmasstransfer.2011.03.032
6.
Badr
,
H. M.
,
Coutanceau
,
M.
,
Dennis
,
S. C. R.
, and
Menard
,
C.
,
1990
, “
Unsteady Flow Past a Rotating Cylinder at Reynolds Numbers 103 and 104
,”
J. Fluid Mech.
,
220
, pp.
459
484
.10.1017/S0022112090003342
7.
Kang
,
S.
, and
Choi
,
H.
,
1999
, “
Laminar Flow Past a Rotating Cylinder
,”
Phys. Fluids
,
11
, pp.
3312
3320
.10.1063/1.870190
8.
Ingham
,
D. B.
, and
Tang
,
T.
,
1990
, “
A Numerical Investigation Into the Steady Flow Past a Rotating Circular Cylinder at Low and Intermediate Reynolds Numbers
,”
J. Comput. Phys.
,
87
, pp.
91
107
.10.1016/0021-9991(90)90227-R
9.
Mittal
,
S.
, and
Kumar
,
B.
,
2003
, “
Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
476
, pp.
303
334
.10.1017/S0022112002002938
10.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
,
1985
, “
Laminar Forced Convection From a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
28
, pp.
253
264
.10.1016/0017-9310(85)90027-4
11.
Nguyen
,
H. D.
,
Paik
,
S.
, and
Douglass
,
R. W.
,
1996
, “
Unsteady Mixed Convection About a Rotating Circular Cylinder With Small Fluctuations in the Free-Stream Velocity
,”
Int. J. Heat Mass Transfer
,
39
, pp.
511
525
.10.1016/0017-9310(95)00149-4
12.
Yan
,
Y. Y.
, and
Zu
,
Y. Q.
,
2008
, “
Numerical Simulation of Heat Transfer and Fluid Flow Past a Rotating Isothermal Cylinder—A LBM Approach
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2519
2536
.10.1016/j.ijheatmasstransfer.2007.07.053
13.
Ma
,
H.
,
Hao
,
S.
,
Wang
,
M.
,
Yang
,
G.
, and
Wang
,
F.
,
2012
, “
Convective Mass Transfer From a Horizontal Rotating Large-Diameter Cylinder
,”
Int. J. Heat Mass Transfer
,
55
, pp.
1419
1422
.10.1016/j.ijheatmasstransfer.2011.09.051
14.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluid With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol. FED-231/MD-66,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
15.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.10.1080/01457630600904593
16.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
17.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
18.
Philip
,
J.
, and
Shima
,
P. D.
,
2012
, “
Thermal Properties of Nanofluids
,”
Adv. Colloid Interface Sci.
,
183–184
, pp.
30
45
.10.1016/j.cis.2012.08.001
19.
Yang
,
C.
,
Li
,
W.
,
Sano
,
Y.
, and
Mochizuki
,
M.
,
2013
, “
On the Anomalous Convective Heat Transfer Enhancement in Nanofluids: A Theoretical Answer to the Nanofluids Controversy
,”
ASME J. Heat Transfer
,
135
, p.
054504
.10.1115/1.4023539
20.
Bejan
,
A.
,
1982
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
21.
Baytas
,
A. C.
,
2000
, “
Entropy Generation for Natural Convection in an Inclined Porous Cavity
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2089
2099
.10.1016/S0017-9310(99)00291-4
22.
Magherbi
,
M.
,
Abbasi
,
H.
, and
Brahim
,
A. B.
,
2003
, “
Entropy Generation at the Onset of Natural Convection
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3441
3450
.10.1016/S0017-9310(03)00133-9
23.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4757
4767
.10.1016/j.ijheatmasstransfer.2010.06.016
24.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2012
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
ASME J. Heat Transfer
,
134
, p.
122501
.10.1115/1.4007411
25.
Abu-Hijleh
,
B. A. K.
, and
Heilen
,
W. N.
,
1999
, “
Entropy Generation Due to Laminar Natural Convection Over a Heated Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
42
, pp.
4225
4233
.10.1016/S0017-9310(99)00078-2
26.
Gregory
,
J.
,
1996
, “
Nanoparticles in Solid and Solutions
,”
Particle Aggregation: Modeling and Measurement
,
J. H.
Fendler
and
I.
Dekany
, eds.,
Kluwer
,
Boston, MA
, p.
203
.
27.
Ohshima
,
H.
, and
Furusawa
,
K.
,
1998
,
Electrical Phenomena at Interfaces: Fundamentals, Measurements, and Applications
, 2nd ed.,
Marcel Dekker, Inc.
,
New York
.
28.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
6
, pp.
1529
1534
.10.1021/nl060992s
29.
Eapen
,
J.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Hu
,
L.
,
Yip
,
S.
,
Rusconi
,
R.
, and
Piazza
,
R.
,
2007
, “
Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction
,”
Phys. Rev. Lett.
,
99
, p.
095901
.10.1103/PhysRevLett.99.095901
30.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2002
2018
.10.1016/j.ijheatmasstransfer.2006.09.034
31.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1326
1336
.10.1016/j.ijheatfluidflow.2008.04.009
32.
Ganguly
,
S.
, and
Chakraborty
,
S.
,
2009
, “
Effective Viscosity of Nanoscale Colloidal Suspensions
,”
J. Appl. Phys.
106
, p.
124309
.10.1063/1.3270423
33.
Hunter
,
R. J.
,
2001
,
Foundation of Colloid Science
,
Oxford University Press
,
New York
.
34.
Wang
,
X. W.
,
Choi
,
S. U. S.
and
Xu
,
X. F.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
, pp.
474
480
.10.2514/2.6486
35.
Einstein
,
A.
,
1906
, “
Eine neue Bestimmung der Moleküldimensionen
,”
Ann. Phys.
324
, p.
289
.10.1002/andp.19063240204
36.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davison
,
L.
,
1999
, “
Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
11
, pp.
288
306
.10.1063/1.869879
37.
Niu
,
J.
,
Zhu
,
Z.
,
2006
, “
Numerical Study of Three-Dimensional Flows Around Two Identical Square Cylinders in Staggered Arrangements
,”
Phys. Fluids
,
18
, p.
044106
.10.1063/1.2194077
38.
Saha
,
A. K.
,
Biswas
,
G.
, and
Muralidhar
,
K.
,
2003
, “
Three-Dimensional Study of Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
24
, pp.
54
66
.10.1016/S0142-727X(02)00208-4
39.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper-Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
pp.
1113
1122
.10.1016/j.ijthermalsci.2007.10.005
40.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Biswas
,
G.
,
2012
, “
Mixed Convective Heat Transfer of Nanofluids Past a Circular Cylinder in Cross Flow in Unsteady Regime
,”
Int. J. Heat Mass Transfer
,
55
, pp.
4783
4799
.10.1016/j.ijheatmasstransfer.2012.04.046
41.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2013
, “
Buoyancy Driven Flow and Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
Int. J. Heat Mass Transfer
,
59
pp.
433
450
.10.1016/j.ijheatmasstransfer.2012.12.032
42.
Sarkar
,
S.
,
Ganguly
,
S.
,
Dalal
,
A.
,
Saha
,
P.
, and
Chakraborty
,
S.
,
2013
, “
Mixed Convective Flow Stability of Nanofluids Past a Square Cylinder by Dynamic Mode Decomposition
,”
Int. J. Heat Fluid Flow
,
44
, pp.
624–634
.10.1016/j.ijheatfluidflow.2013.09.004
43.
Maji
,
P. K.
, and
Biswas
,
G.
,
1999
, “
Analysis of Flow in the Spiral Casing Using a Streamline Upwinding Petrov-Galerkin Method
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
147
174
.10.1002/(SICI)1097-0207(19990520)45:2<147::AID-NME581>3.0.CO;2-G
44.
Biswas
,
G.
, and
Sarkar
,
S.
,
2009
, “
Effect of Thermal Buoyancy on Vortex Shedding Past a Circular Cylinder in Cross Flow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1897
1912
.10.1016/j.ijheatmasstransfer.2008.08.034
45.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
, pp.
718
727
.10.1115/1.3451063
46.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2011
, “
Analysis of Entropy Generation for Distributed Heating in Processing of Materials by Thermal Convection
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2578
2594
.10.1016/j.ijheatmasstransfer.2011.02.003
47.
Ilis
,
G. G.
,
Mobedi
,
M.
,
Sunden
,
B.
,
2008
, “
Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity With Differentially Heated Vertical Walls
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
696
703
.10.1016/j.icheatmasstransfer.2008.02.002
You do not currently have access to this content.