This work demonstrates an innovative microfabricated air-cooling technology that employs an electrohydrodynamic (EHD) corona discharge (i.e., ionic wind pump) for electronics cooling applications. A single, microfabricated ionic wind pump element consists of two parallel collecting electrodes between which a single emitting tip is positioned. A grid structure on the collector electrodes can enhance the overall heat-transfer coefficient and facilitate an IC compatible batch process. The optimized devices studied exhibit an overall device area of 5.4 mm × 3.6 mm, an emitter-to-collector gap of ∼0.5 mm, and an emitter curvature radius of ∼12.5 μm. The manufacturing process developed for the device uses glass wafers, a single mask-based photolithography process, and a low-cost copper-based electroplating process. Various design configurations were explored and modeled computationally to investigate their influence on the cooling phenomenon. The single devices provide a high heat-transfer coefficient of up to ∼3200 W/m2 K and a coefficient of performance (COP) of up to ∼47. The COP was obtained by dividing the heat removal enhancement, ΔQ by the power consumed by the ionic wind pump device. A maximum applied voltage of 1.9 kV, which is equivalent to approximately 38 mW of power input, is required for operation, which is significantly lower than the power required for the previously reported devices. Furthermore, the microfabricated single device exhibits a flexible and small form factor, no noise generation, high efficiency, large heat removal over a small dimension and at low power, and high reliability (no moving parts); these are characteristics required by the semiconductor industry for next generation thermal management solutions.

References

References
1.
Ongkodjojo
,
A.
,
Roberts
,
R. C.
,
Abramson
,
A. R.
, and
Tien
,
N. C.
,
2010
, “
Highly Efficient Ionic Wind-Based Cooling Microfabricated Device for Microchip Cooling Applications
,”
Technical Digest of Hilton Head Workshop 2010—A Solid-State Sensors, Actuators, and Microsystems Workshop
, Transducer Research Foundation (TRF), Inc., San Diego, CA, pp.
447
450
.
2.
Ongkodjojo
,
A.
,
Abramson
,
A. R.
, and
Tien
,
N. C.
,
2010
, “
Design, Modeling, and Optimization for Highly Efficient Ionic Wind-Based Cooling Microfabricated Devices
,”
Proceedings of ASME 2010 International Mechanical Engineering Congress & Exposition (IMECE 2010)
,
Vancouver, BC, Canada
, Paper No. IMECE2010-40427.
3.
Ongkodjojo
,
A.
,
Abramson
,
A. R.
, and
Tien
,
N. C.
,
2011
, “
Optimized Ionic Wind-Based Cooling Microfabricated Devices for Improving a Measured Coefficient of Performance
,”
Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference (AJTEC 2011)
,
Honolulu, HI
. Paper No. AJTEC2011-44208.
4.
Ongkodjojo Ong
,
A.
,
Abramson
,
A. R.
, and
Tien
,
N. C.
,
2012
, “
Optimized and Microfabricated Ionic Wind Pump Array as a Next Generation Solution for Electronics Cooling Systems
,”
Proceedings of ITherm 2012 (13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems)
,
San Diego, CA
, pp.
1306
1311
.
5.
Ardent
,
W.
,
Brillouet
,
M.
,
Cogez
,
P.
,
Graef
,
M.
,
Huizing
,
B.
, and
Mahnkopf
,
M.
, eds.,
2010
, “
More-than-Moore
,” The ITRS White Paper, The International Technology Roadmap for Semiconductors (the ITRS), http://www.itrs.net/papers.html
6.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J.-M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2004
, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
833
842
.10.1109/JMEMS.2004.835768
7.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
,
Mochizuki
,
M.
, and
Riehl
,
R. R.
,
2007
, “
Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
42
49
.10.1109/TCAPT.2007.892066
8.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Pastukhov
,
V. G.
, and
Fried
,
S.
,
2010
, “
Loop Heat Pipes for Cooling Systems of Servers
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
2
), pp.
416
423
.10.1109/TCAPT.2009.2035514
9.
Majumdar
,
A.
,
2009
, “
Thermoelectric Devices—Helping Chips to Keep Their Cool
,”
Nat. Nanotechnol.
,
4
, pp.
214
215
.10.1038/nnano.2009.65
10.
Peek
,
F. W.
,
1929
,
Dielectric Phenomena in High Voltage Engineering
,
McGraw-Hill
,
New York
.
11.
Robinson
,
M.
,
1961
, “
Movement of Air in the Electric Wind of the Corona Discharge
,”
Trans. Am. Inst. Electr. Eng.
,
80
(
2
), pp.
143
150
.
12.
Papoular
,
R.
,
1965
,
Electrical Phenomena in Gases
,
American Elsevier Publishing Co., Inc.
,
New York
, Chap. 14.
13.
Nasser
,
E.
,
1971
,
Fundamentals of Gaseous Ionization and Plasma Electronics
,
John Wiley & Sons, Inc.
,
New York
.
14.
Chang
,
J.-S.
,
Lawless
,
P. A.
, and
Yamamoto
,
T.
,
1991
, “
Corona Discharge Processes
,”
IEEE Trans. Plasma Sci.
,
19
(
6
), pp.
1152
1166
.10.1109/27.125038
15.
Spyrou
,
N.
,
Peyrous
,
R.
,
Soulem
,
N.
, and
Held
,
B.
,
1995
, “
Why Paschen's Law Does Not Apply in Low-Pressure Gas Discharges With Inhomogeneous Fields
,”
J. Phys. D: Appl. Phys.
28
(
4
), pp.
701
710
.10.1088/0022-3727/28/4/013
16.
Leger
,
L.
,
Moreau
,
E.
, and
Touchard
,
G. G.
,
2002
, “
Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate
,”
IEEE Trans. Ind. Appl.
,
38
(
6
), pp.
1478
1485
.10.1109/TIA.2002.804769
17.
Chen
,
J. H.
,
2002
, “
Direct Current Corona-Enhanced Chemical Reactions
,” Ph.D. thesis, University of Minnesota, MN.
18.
Yamada
,
K.
,
2004
, “
An Empirical Formula for Negative Corona Discharge Current in Point-Grid Electrode Geometry
,”
J. Appl. Phys.
,
96
(
5
), pp.
2472
2475
.10.1063/1.1775301
19.
Moreau
,
E.
,
2007
, “
Airflow Control by Non-Thermal Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
40
(
3
), pp.
605
636
.10.1088/0022-3727/40/3/S01
20.
Chua
,
B.
,
Wexler
,
A. S.
,
Tien
,
N. C.
,
Niemeier
,
D. A.
, and
Holmen
,
B. A.
,
2008
, “
Design, Fabrication, and Testing of a Microfabricated Corona Ionizer
,”
IEEE/ASME J. Microelectromech. Syst.
,
17
(
1
), pp.
115
123
.10.1109/JMEMS.2007.909515
21.
Ongkodjojo
,
A.
,
Li
,
D.
,
Roberts
,
R. C.
,
Liu
,
Q.
, and
Tien
,
N. C.
,
2008
, “
Modeling and Measurement of Microfabricated Corona Discharge Structures
,”
Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems
,
Sanya, China
, pp.
932
937
.
22.
Chua
,
B.
,
Wexler
,
A. S.
,
Tien
,
N. C.
,
Niemeier
,
D. A.
, and
Holmen
,
B. A.
,
2009
, “
Electrical Mobility Separation of Airborne Particles Using Integrated Microfabricated Corona Ionizer and Separator Electrodes
,”
IEEE/ASME J. Microelectromech. Syst.
,
18
(
1
), pp.
4
13
.10.1109/JMEMS.2008.2011123
23.
Kibler
,
K. G.
, and
Carter
,
H. G.
, Jr.
,
1974
, “
Electrocooling in Gases
,”
J. Appl. Phys.
,
45
(
10
), pp.
4436
4440
.10.1063/1.1663069
24.
Velkoff
,
H. R.
, and
Godfrey
,
R.
,
1979
, “
Low-Velocity Heat Transfer to a Flat Plate in the Presence of a Corona Discharge in Air
,”
ASME J. Heat Transfer
,
101
(
1
), pp.
157
163
.10.1115/1.3450907
25.
Owsenek
,
B. L.
, and
Yagoobi
,
J. S.
,
1997
, “
Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
604
610
.10.1115/1.2824148
26.
Hsu
,
C.-P.
,
Jewell-Larsen
,
N. E.
,
Krichtafovitch
,
I. A.
,
Montgomery
,
S. W.
,
Dibene
,
J. T.
, II
, and
Mamishev
,
A. V.
,
2007
, “
Miniaturization of Electrostatic Fluid Accelerators
,”
IEEE/ASME J. Microelectromech. Syst.
16
(
4
), pp.
809
815
.10.1109/JMEMS.2007.899336
27.
Go
,
D. B.
,
Maturana
,
R. A.
,
Fisher
,
T. S.
, and
Garimella
,
S. V.
,
2008
, “
Enhancement of External Forced Convection by Ionic Wind
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6047
6053
.10.1016/j.ijheatmasstransfer.2008.05.012
28.
Jewell-Larsen
,
N. E.
,
Ran
,
H.
,
Zhang
,
Y.
,
Schwiebert
,
M. K.
, and
Honer
,
K. A.
,
2009
, “
Electrohydrodynamic (EHD) Cooled Laptop
,”
Proceedings of the 25th IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)
,
San Jose, CA
, pp.
261
266
.
29.
Hsu
,
C.-P.
,
Jewell-Larsen
,
N. E.
,
Krichtafovitch
,
I. A.
, and
Mamishev
,
A. V.
,
2009
, “
Heat-Transfer-Enhancement Measurement for Microfabricated Electrostatic Fluid Accelerators
,”
IEEE/ASME J. Microelectromech. Syst.
,
18
(
1
), pp.
111
118
.10.1109/JMEMS.2008.2008622
30.
Huang
,
R.-T.
,
Sheu
,
W.-J.
, and
Wang
,
C.-C.
,
2009
, “
Heat Transfer Enhancement by Needle-Arrayed Electrodes—An EHD Integrated Cooling System
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1789
1796
.10.1016/j.enconman.2009.03.017
31.
COMSOL MULTIPHYSICS®
,
Heat Transfer Module—User's Guide
,
2008
,
COMSOL, Inc.
,
Burlington, MA
.
32.
Ongkodjojo Ong
,
A.
,
2013
, “
Electrohydrodynamic Microfabricated Ionic Wind Pumps for Electronics Cooling Applications
,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
33.
Dahlmann
,
G. W.
,
Yeatman
,
E. M.
,
Young
,
P.
,
Robertson
,
I. D.
, and
Lucyszyn
,
S.
,
2002
, “
Fabrication, RF Characteristics and Mechanical Stability of Self-Assembled 3D Microwave Inductors
,”
Sens. Actuators A
,
97–98
, pp.
215
220
.10.1016/S0924-4247(01)00851-2
34.
Larsen
,
J. N. E.
,
Hsu
,
C. P.
,
Krichtafovitch
,
I. A.
,
Montgomery
,
S. W.
,
Dibene
,
J. T.
, II
, and
Mamishev
,
A. V.
,
2008
, “
CFD Analysis of Electrostatic Fluid Accelerators for Forced Convection Cooling
,”
IEEE Trans. Dielectr. Electr. Insul.
,
15
(
6
), pp.
1745
1753
.10.1109/TDEI.2008.4712680
35.
Kadambi
,
J. R.
,
Henning
,
J. C.
, and
Abramson
,
A. R.
,
2013
, “
Measurement of Air Flow Velocities in Microsized Ionic Wind Pumps Using Particle Image Velocimetry
,”
Proceedings of the ASME 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
,
Hong Kong, China
.
36.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
John Wiley & Sons
,
New York
.
37.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis—The Study of Uncertainties in Physical Measurements
, 2nd ed.,
University Science Books
,
Mill Valley, CA
.
38.
Kercher
,
D. S.
,
Lee
,
J.-B.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
,
2003
, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
359
366
.10.1109/TCAPT.2003.815116
39.
Michna
,
G. J.
,
Browne
,
E. A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2011
, “
The Effect of Area Ratio on Microjet Array Heat Transfer
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1782
1790
.10.1016/j.ijheatmasstransfer.2010.12.038
40.
Hoberg
,
T. B.
,
Onstad
,
A. J.
, and
Eaton
,
J. K.
,
2010
, “
Heat Transfer Measurements for Jet Impingement Arrays With Local Extraction
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
460
467
.10.1016/j.ijheatfluidflow.2010.01.009
You do not currently have access to this content.