This paper investigates numerically the time dependent hydrothermal behavior of a ferrofluid (water and 4 vol. % Fe3O4) flowing in a helical channel, which is exposed to a nonuniform transverse magnetic field and its walls are subjected to uniform heat flux. The two phase mixture model and control volume technique have been used to study the flow. The results show that applying the nonuniform transverse magnetic field considerably increases the velocity and flow rate in the vicinity of the channel walls while it significantly decreases the velocity at the center of the channel. Applying magnetic field also decreases considerably the temperature of the inner wall of the helical channel. Furthermore, the average Nusselt number is increased by applying the nonuniform transverse magnetic field and it is more enhanced by increasing the magnetic field intensity.

References

References
1.
Thomson
,
D. L.
,
Bayazitoglu
,
Y.
, and
Meade
,
A. J.
,
1998
, “
Low Dean Number Convective Heat Transfer in Helical Ducts of Rectangular Cross Section
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
84
91
.10.1115/1.2830069
2.
Rosensweig
,
R. E.
,
1985
,
Ferrohydrodynamics
,
Cambridge University
,
London
.
3.
Nakatsuka
,
K.
,
Jeyadevan
,
B.
,
Neveu
,
S.
, and
Koganezawa
,
H.
,
2002
, “
The Magnetic Fluid for Heat Transfer Applications
,”
J. Magn. Magn. Mater.
,
252
, pp.
360
362
.10.1016/S0304-8853(02)00683-2
4.
Shuchi
,
S.
,
Sakatani
,
K.
, and
Yamaguchi
,
H.
,
2005
, “
An Application of a Binary Mixture of Magnetic Fluid for Heat Transport Devices
,”
J. Magn. Magn. Mater.
,
289
, pp.
257
259
.10.1016/j.jmmm.2004.11.073
5.
Gunde
,
A. C.
, and
Mitra
,
S. K.
,
2009
, “
Simulation of Flow Control in Microchannels Using Ferrofluid Plugs
,”
ASME 7th International Conference on Nanochannels, Microchannels, and Minichannels
, Pohang, South Korea, pp.
985
989
.
6.
Yamaguchi
,
H.
,
Kobori
,
I.
,
Uehata
,
Y.
, and
Shimada
,
K.
,
1999
, “
Natural Convection of Magnetic Fluid in a Rectangular Box
,”
J. Magn. Magn. Mater.
,
201
, pp.
264
267
.10.1016/S0304-8853(99)00022-0
7.
Wen
,
C. Y.
,
Chen
,
C. Y.
, and
Yang
,
S. F.
,
2002
, “
Flow Visualization of Natural Convection of Magnetic Fluid in a Rectangular Hele-Shaw Cell
,”
J. Magn. Magn. Mater.
,
252C
, pp.
206
208
.10.1016/S0304-8853(02)00671-6
8.
Snyder
,
S. M.
,
Cader
,
T.
,
Finlayson
,
B. A.
,
2003
, “
Finite Element Model of Magnetoconvection of a Ferrofluid
,”
J. Magn. Magn. Mater.
,
262
, pp.
269
279
.10.1016/S0304-8853(02)01502-0
9.
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2003
, “
Enhancement of Heat Transfer in Miniaturized Channels Using Ferrohydrodynamic Convection
,”
ASME International Mechanical Engineering Conference
, Washington, DC, pp.
501
505
.
10.
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2004
, “
Thermomagnetic Convection in a Square Enclosure Using a Line-Dipole
,”
Phys. Fluids
,
16
, pp.
2228
2236
.10.1063/1.1736691
11.
Wen
,
C. Y.
, and
Su
,
W. P.
,
2005
, “
Natural Convection of Magnetic Fluid in a Rectangular Hele-Shaw Cell
,”
J. Magn. Magn. Mater.
,
289
, pp.
209
302
.10.1016/j.jmmm.2004.11.085
12.
Chaves
,
A.
,
Gutman
,
F.
, and
Rinaldi
,
C.
,
2007
, “
Torque and Bulk Flow of Ferrofluid in an Annular Gap Subjected to a Rotating Magnetic Field
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
412
422
.10.1115/1.2567918
13.
Shivakumara
,
I. S.
,
Nanjundappa
,
C. E.
, and
Ravisha
,
M.
,
2009
, “
Effect of Boundary Conditions on the Onset of Thermomagnetic Convection in a Ferrofluid Saturated Porous Medium
,”
ASME J. Heat Transfer
,
131
(
10
), pp.
1003
1011
.10.1115/1.3160540
14.
Wrobel
,
W.
,
Fornalik‐Wajs
,
E.
, and
Szmyd
,
J. S.
,
2010
, “
Experimental and Numerical Analysis of Thermo‐Magnetic Convection in a Vertical Annular Enclosure
,”
Int. J. Heat Fluid. Flow
,
31
, pp.
1019
1031
.10.1016/j.ijheatfluidflow.2010.05.012
15.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Narrimani Kahnamouei
,
Y.
,
2011
, “
A 3D Numerical Simulation of Mixed Convection of a Magnetic Nanofluid in the Presence of Non‐Uniform Magnetic Field in a Vertical Tube Using Two Phase Mixture Model
,”
J. Magn. Magn. Mater.
,
323
, pp.
1963
1972
.10.1016/j.jmmm.2011.02.039
16.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Mohseni
,
F.
,
2011
, “
Two-Phase Mixture Model Simulation of the Hydro-Thermal Behavior of an Electrical Conductive Ferrofluid in the Presence of Magnetic Fields
,”
J. Magn. Magn. Mater.
,
324
, pp.
830
842
.10.1016/j.jmmm.2011.09.028
17.
Strek
,
T.
, and
Jopek
,
H.
,
2006
, “
Computer Simulation of Heat Transfer Through a Ferrofluid
,”
J. Phys. C: Solid State Phys.
,
244
, pp.
1027
1037
.10.1002/pssb.200572720
18.
Tzirtzilakis
,
E. E.
,
Sakalis
,
V. D.
,
Kafoussias
,
N. G.
, and
Hatzikonstantinou
,
P. M.
,
2004
, “
Biomagnetic Fluid Flow in a 3D Rectangular Duct
,”
Int. J. Numer. Methods Fluids
,
44
, pp.
1279
1298
.10.1002/fld.618
19.
Tzirtzilakis
,
E. E.
,
2008
, “
Biomagnetic Fluid Flow in a Channel With Stenosis
,”
Physica D
,
237
, pp.
66
81
.10.1016/j.physd.2007.08.006
20.
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2004
, “
Heat Transfer Augmentation Using a Magnetic Fluid Under the Influence of a Line Dipole
,”
J. Magn. Magn. Mater.
,
271
, pp.
63
73
.10.1016/j.jmmm.2003.09.015
21.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Ahangar Zonouzi
,
S.
,
2013
, “
Numerical Study of the Ferrofluid Flow and Heat Transfer Through a Rectangular Duct in the Presence of a Non-Uniform Transverse Magnetic Field
,”
J. Magn. Magn. Mater.
,
327
, pp.
31
42
.10.1016/j.jmmm.2012.09.011
22.
Tzirtzilakis
,
E. E.
, and
Kafoussias
,
N. G.
,
2010
, “
Three-Dimensional Magnetic Fluid Boundary Layer Flow Over a Linearly Stretching Sheet
,”
ASME J. Heat Transfer
,
132
, p. 011702.10.1115/1.3194765
23.
Yamaguchi
,
H.
,
2008
,
Engineering Fluid Mechanics
,
Springer Science
,
Dordrecht, The Netherlands
.
24.
Kittel
,
Ch.
,
1967
,
Introduction to Solid State Physics
,
John Wiley & Sons
,
New York
.
25.
Buschow
,
K. H. J.
,
2006
,
Handbook of Magnetic Materials
,
Elsevier Science Press
,
Amsterdam
.
26.
Jafari
,
A.
,
Tynjala
,
T.
,
Mousavi
,
S. M.
, and
Sarkomaa
,
P.
,
2008
, “
Simulation of Heat Transfer in a Ferrofluid Using Computational Fluid Dynamics Technique
,”
Int. J. Heat Fluid. Flow
,
29
, pp.
1197
1202
.10.1016/j.ijheatfluidflow.2008.01.007
27.
Savithiri
,
S.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2011
, “
Scaling Analysis for the Investigation of Slip Mechanisms in Nanofluids
,”
Nanoscale Res. Lett.
,
6
, p. 471.10.1186/1556-276X-6-471
28.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two
Component System
,”
Ind. Eng. Chem.
,
1
, pp.
187
191
.10.1021/i160003a005
29.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy
Driven Heat Transfer Enhancement in a Two Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3639
3653
.10.1016/S0017-9310(03)00156-X
30.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
, pp.
119
123
.10.1016/j.cap.2008.12.047
You do not currently have access to this content.