We investigate the bioconvection of gyrotactic microorganism near the boundary layer region of an inclined semi infinite permeable plate embedded in a porous medium filled with a water-based nanofluid containing motile microorganisms. The model for the nanofluid incorporates Brownian motion, thermophoresis, also Soret effect and magnetic field effect are considered in the study. The governing partial differential equations for momentum, heat, solute concentration, nanoparticle volume fraction, and microorganism conservation are reduced to a set of nonlinear ordinary differential equations using similarity transformations and solved numerically. The effects of the bioconvection parameters on the thermal, solutal, nanoparticle concentration, and the density of the micro-organisms are analyzed. A comparative analysis of our results with previously reported results in the literature is given. Some interesting phenomena are observed for the local Nusselt and Sherwood number. It is shown that the Péclet number and the bioconvection Rayleigh number highly influence the local Nusselt and Sherwood numbers. For Péclet numbers less than 1, the local Nusselt and Sherwood number increase with the bioconvection Lewis number. However, both the heat and mass transfer rates decrease with bioconvection Lewis number for higher values of the Péclet number.

References

References
1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol.
99
,
D. A.
Siginerm
,
H. P.
Wang
, eds.,
ASME
,
New York
.
2.
Ebrahimi
,
S.
,
Sabbaghzadeh
,
J.
,
Lajevardi
,
M.
, and
Hadi
,
I.
,
2010
, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids Containing Cylindrical Nanoparticles (Carbon Nanotubes)
,”
Heat Mass Transfer
,
46
, pp.
549
553
.10.1007/s00231-010-0599-1
3.
Wu
,
X.
,
Wu
,
H.
, and
Cheng
,
P.
,
2009
, “
Pressure Drop and Heat Transfer of Al2O3–H2O Nanofluids Through Silicon Microchannels
,”
J. Micromech. Microeng.
,
19
, p.
105020
.10.1088/0960-1317/19/10/105020
4.
Do
,
K. H.
, and
Jang
,
S. P.
,
2010
, “
Effect of Nanofluids on the Thermal Performance of a Flat Micro Heat Pipe With A Rectangular Grooved Wick
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2183
2192
.10.1016/j.ijheatmasstransfer.2009.12.020
5.
Fan
,
X.
,
Chen
,
H.
,
Ding
,
Y.
,
Plucinski
,
P. K.
, and
Lapkin
,
A. A.
,
2008
, “
Potential of Nanofluids to Further Intensify Microreactors
,”
Green Chem.
,
10
, pp.
670
677
.10.1039/b717943j
6.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Wu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
,
New York
.
7.
Wager
,
H.
,
1911
, “
On the Effect of Gravity Upon the Movements and Aggregation of Euglena viridis, Ehrb., and Other Micro-Organisms
,”
Philos. Trans. R. Soc. London, Ser. B
,
201
, pp.
333
390
.10.1098/rstb.1911.0007
8.
Platt
,
J. R.
,
1961
, “
Bioconvection Pattern in Cultures of Free-Swimming Organism
,”
Science
,
133
, pp.
1766
1767
.10.1126/science.133.3466.1766
9.
Plesset
,
M. S.
, and
Winet
,
H.
,
1974
, “
Bioconvection Patterns in Swimming Micro-Organism Cultures As an Example of Rayleigh-Taylor Instability
,”
Nature
,
248
, pp.
441
443
.10.1038/248441a0
10.
Pedley
,
T. J.
,
Hill
,
N. A.
, and
Kessler
,
J. O.
,
1988
, “
The Growth of Bioconvection Patterns in a Uniform Suspension of Gyrotactic Micro-Organisms
,”
J. Fluid Mech.
,
195
, pp.
223
338
.10.1017/S0022112088002393
11.
Pedley
,
T. J.
, and
Kessler
,
J. O.
,
1992
, “
Hydrodynamic Phenomena in Suspensions of Swimming Micro-Organisms
,”
Annu. Rev. Fluid Mech.
,
24
, pp.
313
358
.10.1146/annurev.fl.24.010192.001525
12.
Kuznetsov
,
A. V.
, and
Avramenko
,
A. A.
,
2004
, “
Effect of Small Particles on the Stability of Bioconvection in a Suspension of Gyrotactic Microorganisms in a Layer of Finite Depth
,”
Int. Commun. Heat Mass Transfer
,
31
, pp.
1
10
.10.1016/S0735-1933(03)00196-9
13.
Geng
,
P.
, and
Kuznetsov
,
A. V.
,
2005
, “
Introducing the Concept of effective diffusivity to Evaluate the Effect of Bioconvection on Small Solid Particles
,”
Int. J. Transp. Phenom.
,
7
, pp.
321
338
.
14.
Kuznetsov
,
A. V.
, and
Geng
,
P.
,
2005
, “
The Interaction of Bioconvection Caused by Gyrotactic Micro-Organisms and Settling of Small Solid Particles
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
, pp.
328
347
.10.1108/09615530510590597
15.
Kuznetsov
,
A. V.
,
2011
, “
Non-Oscillatory and Oscillatory Nanofluid Bio-Thermal Convection in a Horizontal Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
30
, pp.
156
165
.10.1016/j.euromechflu.2010.10.007
16.
Kuznetsov
,
A. V.
,
2012
, “
Nanofluid Bioconvection: Interaction of Microorganisms Oxytactic Upswimming, Nanoparticle Distribution, and Heating/Cooling From Below
,”
Theor. Comput. Fluid Dyn.
,
26
, pp.
291
310
.10.1007/s00162-011-0230-1
17.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particel Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2189
2195
.10.1016/j.ijheatmasstransfer.2007.11.063
18.
Kohno
,
M.
,
Yamazaki
,
M.
,
Kimura
, I
.
, and
Wada
,
M.
,
2000
, “
Effect of Static Magnetic Fields on Bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli
,”
Pathophysiology
,
7
, pp.
143
148
.10.1016/S0928-4680(00)00042-0
19.
Strašák
,
L.
,
Vetterl
,
V.
, and
Šmarda
,
J.
,
2002
, “
Effects of Low-Frequency Magnetic Fields on Bacteria Escherichia coli
,”
Bioelectrochem
,
55
, pp.
161
164
.10.1016/S1567-5394(01)00152-9
20.
Fojt
,
L.
,
Strašák
,
L.
,
Vetterl
,
V.
, and
Šmarda
,
J.
,
2004
, “
Comparison of the Low-Frequency Magnetic Field Effects on Bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus
,”
Bioelectrochem.
,
63
, pp.
337
341
.10.1016/j.bioelechem.2003.11.010
21.
Sarkar
,
A. K.
,
Georgiou
,
G.
, and
Sharma
,
M. M.
,
1994
, “
Transport of Bacteria in Porous Media: I. An Experimental Investigation
,”
Biotech. Bioengng.
,
44
, pp.
489
497
.10.1002/bit.260440412
22.
Sarkar
,
A. K.
,
Georgiou
,
G.
, and
Sharma
,
M. M.
,
1994
, “
Transport of Bacteria in Porous Media: II. A Model for Convective Transport and Growth
,”
Biotech. Bioengng.
,
44
, pp.
499
508
.10.1002/bit.260440413
23.
Hill
,
N. A.
, and
Bees
,
M. A.
,
2002
, “
Taylor Dispersion of Gyrotactic Swimming Micro-Organisms in a Linear Flow
,”
Phys. Fluids
,
14
, pp.
2598
2605
.10.1063/1.1458003
24.
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
1421
1425
.10.1016/j.icheatmasstransfer.2010.08.015
25.
Kuznetsov
,
A. V.
,
2011
, “
Bio-Thermal Convection Induced by Two Different Species of Microorganisms
,”
Int. Commun. Heat Mass Transfer
,
38
, pp.
548
553
.10.1016/j.icheatmasstransfer.2011.02.006
26.
Aziz
,
A.
,
Khan
,
W. A.
, and
Pop
,
I.
,
2012
, “
Free Convection Boundary Layer Flow Past a Horizontal Flate Plate Embedded in Porous Medium Filled by Nanofluid Containing Gyrotactic Microorganisms
,”
Int. J. Thermal Sci.
,
56
, pp.
48
57
.10.1016/j.ijthermalsci.2012.01.011
27.
Hillesdon
,
A. J.
, and
Pedley
,
T. J.
,
2010
, “
Instability of Uniform Micro-Organism Suspensions Revisited
,”
J. Fluid Mech.
647
, pp.
335
359
.10.1017/S0022112010000108
28.
Kuznetsov
,
A. V.
,
2011
, “
Nanofluid Bio-Thermal Convection: Simultaneous Effects of Gyrotactic and Oxytactic Microorganisms
,”
Fluid Dyn. Res.
,
43
, p.
055505
.10.1088/0169-5983/43/5/055505
29.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5796
5801
.10.1016/j.ijheatmasstransfer.2009.07.023
30.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
The Onset of Double-Diffusive Nanofluid Convection in a Layer of a Saturated Porous Medium
,”
Transp. Porous Media
,
85
, pp.
941
951
.10.1007/s11242-010-9600-1
31.
Kuznetsov
,
A. V.
,
2012
, “
Nanofluid Bioconvection in Porous Media: Oxytactic Microorganisms
,”
J. Porous Media
,
15
, pp.
233
248
.10.1615/JPorMedia.v15.i3.30
32.
Gorla
,
R. S. R.
, and
Chamkha
,
A.
,
2011
, “
Natural Convective Boundary Layer Flow Over a Horizontal Plate Embedded in a Porous Medium Saturated With A Nanofluid
,”
J. Mod. Phys.
,
2
, pp.
62
71
.10.4236/jmp.2011.22011
33.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
The Cheng-Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5792
5795
.10.1016/j.ijheatmasstransfer.2009.07.024
34.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2011
, “
The Cheng-Minkowycz Problem for the Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
54
, pp.
374
378
.10.1016/j.ijheatmasstransfer.2010.09.034
35.
Kuznetsov
,
A. V.
,
2005
, “
Thermo-Bioconvection in a Suspension of Oxytactic Bacteria
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
991
999
.10.1016/j.icheatmasstransfer.2004.11.005
36.
Kuznetsov
,
A. V.
,
2006
, “
The Onset of Thermo-Bioconvection in a Shallow Fluid Saturated Porous Layer Heated From Below in a Suspension of Oxytactic Microorganisms
,”
Eur. J. Mech. B/Fluids
,
25
, pp.
223
233
.10.1016/j.euromechflu.2005.06.003
37.
Kameswaran
,
P. K.
,
Narayana
,
M.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Hydromagnetic Nanofluid Flow Due to a Stretching or Shrinking Sheet With Viscous Dissipation and Chemical Reaction Effects
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7587
7595
.10.1016/j.ijheatmasstransfer.2012.07.065
You do not currently have access to this content.