The vortex shedding (VS) behind stationary bluff obstacles in cross-flow can be initiated by imposing thermal instability at subcritical Reynolds numbers (Re). We demonstrate here that additional thermal instability is required to be imparted in the form of heating for destabilizing the flow around a rotating bluff obstacle. A two-dimensional numerical simulation is performed in this regard to investigate the influences of cross buoyancy on the VS process behind a heated and rotating circular cylinder at subcritical Re. The flow is considered in an unbounded medium. The range of Re is chosen to be 5–45 with a dimensionless rotational speed (Ω) ranging between 0 and 4. At this subcritical range of Reynolds number the flow and thermal fields are found to be steady without the superimposed thermal buoyancy (i.e., for pure forced flow). However, as the buoyancy parameter (Richardson number, Ri) increases flow becomes unstable and subsequently, at some critical value of Ri, periodic VS is observed to characterize the flow and thermal fields. The rotation of the cylinder is found to have a stabilizing effect and as Ω increases more heating is observed to be required to destabilize the flow.

References

References
1.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1991
, “
Rotary Oscillation Control of Cylinder Wake
,”
J. Fluid Mech.
,
224
, pp.
77
90
.10.1017/S0022112091001659
2.
Padrino
,
J. C.
, and
Joseph
,
D. D.
,
2006
, “
Numerical Study of the Steady-State Uniform Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
557
, pp.
191
223
.10.1017/S0022112006009682
3.
Kang
,
S.
,
Choi
,
H.
, and
Lee
,
S.
,
1999
, “
Laminar Flow Past a Rotating Circular Cylinder
,”
Phys. Fluids
,
11
, pp.
3312
3321
.10.1063/1.870190
4.
Hu
,
G.
,
Sun
,
D.
,
Yin
,
X.
, and
Tong
,
B.
,
1996
, “
Hopf Bifurcation in Wakes Behind a Rotating and Translating Circular Cylinder
,”
Phys. Fluids
,
8
, pp.
1972
1974
.10.1063/1.868976
5.
Stojkovic
,
D.
,
Breuer
,
M.
, and
Durst
,
F.
,
2002
, “
Effect of High Rotation Rates on the Laminar Flow Around a Circular Cylinder
,”
Phys. Fluids
,
14
, pp.
3160
3178
.10.1063/1.1492811
6.
Mittal
,
S.
, and
Kumar
,
B.
,
2003
, “
Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
476
, pp.
303
334
.10.1017/S0022112002002938
7.
Merkin
,
J. H.
,
1977
, “
Mixed Convection from a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
20
, pp.
73
77
.10.1016/0017-9310(77)90086-2
8.
Jain
,
P. C.
, and
Lohar
,
B. L.
,
1979
, “
Unsteady Mixed Convection Heat Transfer From a Horizontal Circular Cylinder
,”
ASME J. Heat Transfer
,
101
, pp.
126
131
.10.1115/1.3450902
9.
Gandikota
,
G.
,
Amiroudine
,
S.
,
Chatterjee
,
D.
, and
Biswas
,
G.
,
2010
, “
Effect of Aiding/Opposing Buoyancy on Two–Dimensional Laminar Flow and Heat Transfer Across a Circular Cylinder
,”
Numer. Heat Transfer, Part A
,
58
, pp.
385
402
.10.1080/10407782.2010.505167
10.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2012
, “
Effect of Thermal Buoyancy on the Two-Dimensional Upward Flow and Heat Transfer Around a Square Cylinder
,”
Heat Transfer Eng.
,
33
, pp.
1
14
.10.1080/01457632.2012.659634
11.
Patnaik
,
B. S. V.
,
Narayana
,
P. A. A.
, and
Seetharamu
,
K. N.
,
1999
, “
Numerical Simulation of Vortex Shedding Past a Circular Cylinder Under the Influence of Buoyancy
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3495
3507
.10.1016/S0017-9310(98)00373-1
12.
Biswas
,
G.
,
Laschefski
,
H.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1990
, “
Numerical Investigation of Mixed Convection Heat Transfer in a Horizontal Channel With a Built-In Square Cylinder
,”
Numer. Heat Transfer, Part A
,
18
, pp.
173
188
.10.1080/10407789008944789
13.
Biswas
,
G.
, and
Sarkar
,
S.
,
2009
, “
Effect of Thermal Buoyancy on Vortex Shedding Past a Circular Cylinder in Cross-flow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1897
1912
.10.1016/j.ijheatmasstransfer.2008.08.034
14.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2011
, “
Effect of Thermal Buoyancy on Vortex Shedding Behind a Square Cylinder in Cross Flow at Low Reynolds Number
,”
Int. J. Heat Mass Transfer
,
54
, pp.
5262
5274
.10.1016/j.ijheatmasstransfer.2011.08.016
15.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2012
, “
On the Vortex Shedding Mechanism Behind a Circular Cylinder Subjected to Cross Buoyancy at Low Reynolds Numbers
,”
Comput. Therm. Sci.
,
4
, pp.
23
38
.10.1615/ComputThermalScien.2012003930
16.
Chatterjee
,
D.
,
2012
, “
Triggering Vortex Shedding by Superimposed Thermal Buoyancy Around Bluff Obstacles in Cross-flow at Low Reynolds Numbers
,”
Numer. Heat Transfer, Part A
,
61
, pp.
800
806
.10.1080/10407782.2012.672862
17.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
,
1985
, “
Laminar Forced Convection From a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
28
, pp.
253
264
.10.1016/0017-9310(85)90027-4
18.
Mahfouz
,
F. M.
, and
Badr
,
H. M.
,
1999
, “
Heat Convection From a Cylinder Performing Steady Rotation or Rotary Oscillation–—Part I: Steady Rotation
,”
Heat and Mass Transfer
,
34
, pp.
365
373
.10.1007/s002310050271
19.
Paramane
,
S. B.
, and
Sharma
,
A.
,
2009
, “
Numerical Investigation of Heat and Fluid Flow Across a Rotating Circular Cylinder Maintained at Constant Temperature in 2-D Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3205
3216
.10.1016/j.ijheatmasstransfer.2008.12.031
20.
Paramane
,
S. B.
, and
Sharma
,
A.
,
2010
, “
Heat and Fluid Flow Across a Rotating Cylinder Dissipating Uniform Heat Flux in 2D Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4672
4683
.10.1016/j.ijheatmasstransfer.2010.06.026
21.
Sharma
,
V.
, and
Dhiman
,
A. K.
,
2012
, “
Heat Transfer From a Rotating Circular Cylinder in the Steady Regime: Effects of Prandtl Number
,”
Therm. Sci.
,
16
, pp.
79
91
.10.2298/TSCI100914057S
22.
Paramane
,
S. B.
, and
Sharma
,
A.
,
2010
, “
Effect of Cross-Stream Buoyancy and Rotation on the Free-Stream Flow and Heat Transfer Across a Cylinder
,”
Int. J. Therm. Sci.
,
49
, pp.
2008
2025
.10.1016/j.ijthermalsci.2010.05.020
23.
Fluent, Inc.
,
2001
,
FLUENT 6.0 User's Guide
, Vol.
5
,
Fluent Inc.
,
Lebanon, NH
.
24.
Ingham
,
D. B.
, and
Tang
,
T.
,
1990
, “
A Numerical Investigation into the Steady Flow Past a Rotating Circular Cylinder at Low and Intermediate Reynolds Numbers
,”
J. Comput. Phys.
,
87
, pp.
91
107
.10.1016/0021-9991(90)90227-R
25.
Strykowski
,
P.
, and
Sreenivasan
,
K.
,
1990
, “
On the Formation and Suppression of Vortex Shedding at Low Reynolds Numbers
,”
J. Fluid Mech.
,
218
, pp.
71
107
.10.1017/S0022112090000933
You do not currently have access to this content.