The boundary-layer flow and heat transfer over a non-isothermal stretching sheet in a nanofluid with the effect of magnetic field and thermal radiation have been investigated. The transport equations used for the analysis include the effect of Brownian motion and thermophoresis. The solution for the temperature and nanoparticle concentration depends on six parameters, viz., thermal radiation parameter R, Prandtl number Pr, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher order nonlinear ordinary differential equations. These equations were numerically solved using a fourth-order Runge–Kutta method with shooting technique. The analysis has been carried out for two different cases, namely prescribed surface temperature (PST) and prescribed heat flux (PHF) to see the effects of governing parameters for various physical conditions. Numerical results are obtained for distribution of velocity, temperature and concentration, for both cases i.e., prescribed surface temperature and prescribed heat flux, as well as local Nusselt number and Sherwood number. The results indicate that the local Nusselt number decreases with an increase in both Brownian motion parameter Nb and thermophoresis parameter Nt. However, the local Sherwood number increases with an increase in both thermophoresis parameter Nt and Lewis number Le. Besides, it is found that the surface temperature increases with an increase in the Lewis number Le for prescribed heat flux case. A comparison with the previous studies available in the literature has been done and we found an excellent agreement with it.

References

References
1.
Sakiadis
,
B. C.
,
1961
, “
Boundary Layer Behavior on Continuous Solid Surface: II. The Boundary Layer on a Continuous Flat Surface
,”
J. Am. Inst. Chem. Eng. (AICHE)
,
7
(
2
), pp.
221
225
.10.1002/aic.690070211
2.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
J. Appl. Math. Phys. (ZAMP)
,
21
, pp.
645
647
.10.1007/BF01587695
3.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.10.1002/cjce.5450550619
4.
Fadzilah
,
M.
,
Nazar
,
R.
,
Norihan
,
M.
, and
Pop
,
I.
,
2011
, “
MHD Boundary-Layer Flow and Heat Transfer Over a Stretching Sheet With Induced Magnetic Field
,”
J. Heat Mass Transfer
,
47
, pp.
155
162
.10.1007/s00231-010-0693-4
5.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Hydro Magnetic Flow and Heat Transfer Adjacent to a Stretching Vertical Sheet
,”
Heat Mass Transfer
,
44
, pp.
921
927
.10.1007/s00231-007-0322-z
6.
Mahapatra
,
T. R.
, and
Gupta
,
A. S.
,
2001
, “
Magnetohydrodynamics Stagnation-Point Flow Towards a Stretching Sheet
,”
Acta Mech.
,
152
, pp.
191
196
.10.1007/BF01176953
7.
Ishak
,
A.
,
Jafar
,
K.
,
Nazar
,
R.
, and
Pop
,
I.
,
2009
, “
MHD Stagnation Point Flow Towards a Stretching Sheet
,”
Physica A
,
388
, pp.
3377
3383
.10.1016/j.physa.2009.05.026
8.
Mahapatra
,
T. R.
,
Nandy
,
S. K.
, and
Gupta
,
A. S.
,
2009
, “
Magnetohydrodynamic Stagnation Point Flow of a Power-Law Fluid Towards a Stertching Sheet
,”
Int. J. Non-Linear Mech.
,
44
, pp.
124
129
.10.1016/j.ijnonlinmec.2008.09.005
9.
Ishak
,
A.
,
Bachok
,
N.
,
Nazar
,
R.
, and
Pop
,
I.
,
2010
, “
MHD Mixed Convection Flow Near the Stagnation-Point on a Vertical Permeable Surface
,”
Physica A
,
389
, pp.
40
46
.10.1016/j.physa.2009.09.008
10.
Mahapatra
,
T. R.
, and
Gupta
,
A. G.
,
2002
, “
Heat Transfer in Stagnation Point Flow Towards a Stretching Sheet
,”
Heat Mass Transfer
,
38
, pp.
517
521
.10.1007/s002310100215
11.
Wang
,
C. Y.
,
2008
, “
Stagnation Point Flow Towards a Shrinking Sheet
,”
Int. J. Non-Linear Mech.
,
43
, pp.
377
382
.10.1016/j.ijnonlinmec.2007.12.021
12.
Lok
,
Y. Y.
,
Amin
,
N.
, and
Pop
,
I.
,
2006
, “
Non-Orthogonal Stagnation Point Flow Towards a Stretching Sheet
,”
Int. J. Non-Linear Mech.
,
41
, pp.
622
627
.10.1016/j.ijnonlinmec.2006.03.002
13.
Ishak
,
A.
,
Lok
,
Y. Y.
, and
Pop
,
I.
,
2010
, “
Stagnation-Point Flow Over a Shrinking Sheet in a Micropolar Fluid
,”
Chem. Eng. Commun.
,
197
, pp.
1417
1427
.10.1080/00986441003626169
14.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Mixed Convection Stagnation Point Flow of a Micropolar Fluid Towards a Stretching Sheet
,”
Mechanica
,
43
, pp.
411
418
.10.1007/s11012-007-9103-5
15.
Hayat
,
T.
,
Javed
,
T.
, and
Abbas
,
Z.
,
2009
, “
MHD Flow of a Micropolar Fluid Near a Stagnation-Point Towards a Non-linear Stretching Surface
,”
Nonlinear Anal.: Real World Appl.
,
10
, pp.
1514
1526
.10.1016/j.nonrwa.2008.01.019
16.
Nadeem
,
S.
,
Hussani
,
M.
, and
Naz
,
M.
,
2010
, “
MHD Stagnation Flow of a Micropolar Fluid Through a Porous Medium
,”
Mechanica
45
, pp.
869
880
.10.1007/s11012-010-9297-9
17.
Ashraf
,
M.
, and
Ashraf
,
M. M.
,
2011
, “
MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface
,”
Appl. Math. Mech. Engl. Ed.
,
32
(
1
), pp.
45
54
.10.1007/s10483-011-1392-7
18.
Ali
,
F. M.
,
Nazar
,
R.
,
Arifin
,
N. M.
, and
Pop
,
I.
,
2011
, “
MHD Stagnation-Point Flow and Heat Transfer Towards Stretching Sheet With Induced Magnetic Field
,”
Appl. Math. Mech. Engl. Ed.
,
32
(
4
), pp.
409
418
.10.1007/s10483-011-1426-6
19.
Hayat
,
T.
,
Rafique
,
A.
,
Malik
,
M. Y.
, and
Obaidat
,
S.
,
2012
, “
Stagnation-Point Flow of Maxwell Fluid With Magnetic Field and Radiation Effects
,”
Heat Transfer—Asian Res.
,
41
(
1
), pp.
23
32
.10.1002/htj.20385
20.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, FED231/MD66, pp. 99–105.
21.
Wang
,
X.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids-Part I: Theoretical and Numerical Investigation
,”
Braz. J. Chem. Eng.
,
25
(
04
), pp.
613
630
.10.1590/S0104-66322008000400001
22.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2010
, “
Boundary-Layer Flow of Nanofluids Over a Moving Surface in a Flowing Fluid
,”
Int. J. Therm. Sci.
,
49
, pp.
1663
1668
.10.1016/j.ijthermalsci.2010.01.026
23.
Hamad
,
M. A.
,
Pop
,
I.
, and
Ismali
,
A. I.
,
2011
, “
Magnetic Field Effects on Free Convection Flow of a Nanofluid Past a Vertical Semi-Infinite Flat Plate
,”
Non-Linear Anal.: Real World Appl.
,
12
, pp.
1338
1346
.10.1016/j.nonrwa.2010.09.014
24.
Ahmad
,
S.
,
Rohni
,
A. M.
, and
Pop
,
I.
,
2011
, “
Blasius and Sakiadis Problems in Nanofluids
,”
Acta Mech.
218
, pp.
195
204
.10.1007/s00707-010-0414-6
25.
Yacob
,
A.
,
Ishak
,
A.
,
Pop
,
I.
, and
Vajavelu
,
K.
,
2011
, “
Boundary Layer Flow Past a Stretching/Shrinking Surface Beneath an External Uniform Shear Flow With Convective Surface Boundary Condition in a Nanofluid
,”
Nanoscale Res. Lett.
6
(
314
), pp.
1
7
.10.1186/1556-276X-6-314
26.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
, pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
27.
Mostafa
,
M.
,
Hayat
,
T.
,
Pop
,
I.
,
Asghar
,
S.
, and
Obaidat
,
S.
,
2011
, “
Stagnation Point Flow of a Nanofluid Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
54
, pp.
5588
5594
.10.1016/j.ijheatmasstransfer.2011.07.021
28.
Bachok
,
N.
,
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2010
, “
Flow and Heat Transfer at a General Three-Dimensional Stagnation Point in Nanofluid
,”
J. Phys. B
,
405
, pp.
4914
4918
.10.1016/j.physb.2010.09.031
29.
Hamad
,
A.
, and
Ferdows
,
M.
,
2012
, “
Similarity Solution of Boundary Layer Stagnation Point Flow Towards a Heated Porous Stretching Sheet Saturated With Nanofluid With Heat Absorption/Generation and Suction/Blowing: A Lie Group Analysis
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
132
140
.10.1016/j.cnsns.2011.02.024
30.
Nazar
,
R.
,
Jaradat
,
M.
,
Arifin
,
M.
, and
Pop
,
I.
,
2011
, “
Stagnation-Point Flow Past a Shrinking Sheet in a Nanofluid
,”
Cent. Eur. J. Phys.
,
9
(
5
), pp.
1195
1202
.10.2478/s11534-011-0024-5
31.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME, J. Heat Transfer
,
128
, pp.
241
250
.10.1115/1.2150834
32.
Khan
,
W. A.
, and
Pop
,
I.
,
2010
, “
Boundary Layer Flow of a Nanofluid Past a stretching Sheet
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2477
2483
.10.1016/j.ijheatmasstransfer.2010.01.032
33.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2011
,
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
50
, pp.
1326
1332
.10.1016/j.ijthermalsci.2011.02.019
34.
Vajravelu
,
K.
,
Prasad
,
K. V.
,
Jinho
,
L.
,
Changhoon
,
L.
,
Pop
,
I.
,
Robert
,
A.
, and
Gorder
,
V.
,
2011
, “
Convective Heat Transfer in the Flow of Viscous Ag-Water and Cu-Water Nanofluids Over a Stretching Surface
,”
Int. J. Therm. Sci.
,
50
, pp.
843
851
.10.1016/j.ijthermalsci.2011.01.008
35.
Noghrehabad
,
A.
,
Saffarian
,
M. R.
,
Pourrajab
,
R.
, and
Ghalambaz
,
M.
,
2013
, “
Entropy Analysis for Nanofluid Flow Over a Stretching Sheet in the Presence of Heat Generation/Absorption and Partial Slip
,”
J. Mech. Sci. Technol.
27
(
3
), pp.
927
937
.10.1007/s12206-013-0104-0
36.
Ibrahim
,
W.
, and
Shanker
,
B.
,
2012
, “
Boundary-Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate With Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
134
, p. 081203.10.1115/1.4007075
37.
Khan
,
W. A.
, and
Gorla
,
R. S. R.
,
2012
, “
Heat and Mass Transfer in Power-Law Nanofluid Over a Non-Isothermal Stretching Wall With Convective Boundary Condition
,”
ASME J. Heat Transfer
,
134
, p. 112001.10.1115/1.4007138
38.
Ibrahim
,
W.
,
Shankar
,
B.
, and
Nandeppanavar
,
M. M.
,
2013
, “
MHD Stagnation Point Flow and Heat Transfer Due to Nanofluid Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
56
, pp.
1
9
.10.1016/j.ijheatmasstransfer.2012.08.034
39.
Ibrahim
,
W.
, and
Shankar
,
B.
,
2013
, “
MHD Boundary Layer Flow and Heat Transfer of a Nanofluid Past a Permeable Stretching Sheet With Velocity, Thermal and Solutal Slip Boundary Conditions
,”
J. Comput. Fluids
,
75
, pp.
1
10
.10.1016/j.compfluid.2013.01.014
40.
Ibrahim
,
W.
,
Makinde
,
O. D.
,
2013
, “
The Effect of Double Stratification on Boundary Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate
,”
J. Comput. Fluids
,
86
, pp.
433
441
.10.1016/j.compfluid.2013.07.029
You do not currently have access to this content.