Thermal energy storage is a distinguishing component of a concentrating solar power (CSP) system, which enables uninterrupted operation of plant during periods of cloudy or intermittent solar availability. Latent thermal energy storage (LTES) which utilizes phase change material (PCM) as a heat storage medium is attractive due to its high energy storage density and low capital cost. However, the low thermal conductivity of the PCM restricts its solidification rate, leading to inefficient heat transfer between the PCM and the heat transfer fluid which carries thermal energy to the power block. To address this limitation, LTES embedded with heat pipes and PCM's stored within the framework of porous metal foam that have one to two orders of magnitude higher thermal conductivity than the PCM are considered in the present study. A transient, computational analysis of the metal foam enhanced LTES system with embedded heat pipes is performed to investigate the enhancement in the thermal performance of the system for different arrangements of heat pipes and design parameters of metal foam, during both charging and discharging operation.

References

References
1.
Herrmann
,
U.
, and
Kearney
,
D. W.
,
2002
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
, pp.
145
152
.10.1115/1.1467601
2.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
, 2013, “
Technical Challenges and Opportunities for Concentrating Solar Power With Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p. 021011.10.1115/1.4024143
3.
Jegadheeswaran
,
S.
, and
Pohekar
,
S. D.
,
2009
, “
Performance Enhancement in Latent Heat Thermal Storage System: A Review
,”
Appl. Therm. Eng.
,
13
, pp.
329
333
.
4.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2005
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3689
3706
.10.1016/j.ijheatmasstransfer.2004.10.042
5.
Gharebaghi
,
M.
, and
Sezai
,
I.
,
2008
, “
Enhancement of Heat Transfer in Latent Heat Storage Modules With Internal Fins
,”
Numer. Heat Transfer, Part A
,
53
, pp.
749
765
.10.1080/10407780701715786
6.
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2011
, “
Enhancement of Latent Heat Energy Storage Using Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
154
, pp.
3476
3484
.10.1016/j.ijheatmasstransfer.2011.03.038
7.
Tardy
,
S.
, and
Sami
,
S. M.
,
2009
, “
Thermal Analysis of Heat Pipes During Thermal Storage
,”
Appl. Therm. Eng.
,
29
, pp.
329
333
.10.1016/j.applthermaleng.2008.02.037
8.
Sharifi
,
N.
,
Wang
,
S.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2012
, “
Heat Pipe-Assisted Melting of a Phase Change Material
,”
Int. J. Heat Mass Transfer
,
55
, pp.
3458
3469
.10.1016/j.ijheatmasstransfer.2012.03.023
9.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2011
, “
Analysis and Optimization of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4596
4610
.10.1016/j.ijheatmasstransfer.2011.06.018
10.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Computational Studies on a Latent Thermal Energy Storage System With Integral Heat Pipes for Concentrating Solar Power
,”
Appl. Energy
,
103
, pp.
400
415
.10.1016/j.apenergy.2012.09.056
11.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Thermal Energy Storage With Heat Transfer Augmentation Using Thermosyphons
,”
Int. J. Heat Mass Transfer
,
67
, pp.
281
294
.10.1016/j.ijheatmasstransfer.2013.08.007
12.
Nithyanandam
,
K.
, and
Pitchumani
R.
,
2014
, “
Computational Modeling of Dynamic Response of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
ASME J. Sol. Energy Eng.
,
136
(
1
),
011010
.10.1115/1.4024745
13.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Analysis of a Latent Thermocline Storage System With Encapsulated Phase Change Materials for Concentrating Solar Power
,”
App. Energy
,
113
, pp.
1446
1460
.10.1016/j.apenergy.2013.08.053
14.
Mathur
,
A.
,
Kasetty
,
R.
,
Oxley
,
J.
,
Mendez
,
J.
, and
Nithyanandam
,
K.
,
2013
Using Encapsulated Phase Change Salts for Concentrated Solar Power Plant
,”
Energy Procedia
, Proceedings of SolarPACES 2013, Las Vegas, NV, September 17–20.
15.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Cost and Performance Analysis of Concentrating Solar Power Systems With Integrated Latent Thermal Energy Storage
,”
Energy
, (in press).10.1016/j.energy.2013.10.095
16.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
Thermal and Exergetic Analysis of Metal Foam-Enhanced Cascaded Thermal Energy Storage (MF-CTES)
,”
Int. J. Heat Mass Transfer
,
58
, pp.
86
96
.10.1016/j.ijheatmasstransfer.2012.11.034
17.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Woburn, MA
.
18.
Lee
,
Y. C.
,
Zhang
,
W.
,
Xie
,
H.
, and
Mahajan
,
R. L.
,
1993
, “
Cooling of a FCHIP Package with 100 W, 1 cm2 Chip
,” Proceedings of the 1993 ASME International Electronics Packaging Conference,
1
, pp.
419
423
.
19.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
, pp.
557
565
.10.1115/1.1287793
20.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Melting of Phase Change Material with Volume Change in Metal Foams
,”
ASME J. Heat Transfer
,
132
, p.
062301
.10.1115/1.4000747
21.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Design and Analysis of Metal foam Enhanced Latent Thermal Energy Storage with Embedded Heat Pipes for Concentrating Solar Power Plants
,”
7th International Conference on Energy Sustainability
, Paper No. ESFuelCell2013-18211, Minneapolis, MN.
22.
Voller
,
V. R.
,
Cross
,
M.
, and
Markatos
,
N. C.
,
1987
, “
An Enthalpy Method for Convection/Diffusion Phase Change
,”
Int. J. Numer. Methods
,
24
, pp.
271
284
.10.1002/nme.1620240119
23.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
, pp.
297
318
.
24.
Zukauskas
,
A. A.
, 1987,
Handbook of Single-Phase Heat Transfer
,”
S.
Kakac
and
R. K.
Shah
, eds.,
Wiley-Interscience
,
New York
.
25.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
, pp.
827
836
.10.1016/S0017-9310(00)00123-X
26.
U.S. Department of Energy, 2012, “Sun Shot Vision Study: SunShot, Energy Efficiency and Renewable Energy,” NREL Report No. BK5200-47927; DOE/GO-102012-3037, last accessed November 2013, http://www.solar.energy.gov/pdfs/47927.pdf
27.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
955
970
.10.1016/j.rser.2009.11.011
28.
Beckermann
,
C.
, and
Viskanta
,
R.
,
1988
, “
Natural Convection Solid/Liquid Phase Change in Porous Media
,”
Int. J. Heat Mass Transfer
,
31
, pp.
35
46
.10.1016/0017-9310(88)90220-7
You do not currently have access to this content.