Boiling can provide several orders of magnitude higher performance than a traditional air cooled system in electronics cooling applications. It can dissipate large quantities of heat while maintaining a low surface temperature difference. Flow boiling with microchannels has shown a great potential with its high surface area to volume ratio and latent heat removal. However, flow instabilities and low critical heat flux (CHF) have prevented its successful implementation. A novel flow boiling design is experimentally investigated to overcome the above-mentioned disadvantages while presenting a very low pressure drop. The design uses open microchannels with a tapered manifold (OMM) to provide stable and efficient operation. The effect of tapered manifold block with varied dimension is investigated with distilled, degassed water at atmospheric pressure. Heat transfer coefficient and pressure drop results for uniform and tapered manifolds with plain and microchannel chips are presented. The OMM configuration yielded a CHF of over 500 W/cm2 in our earlier work. In the current work, a heat transfer coefficient of 277.8 kW/m2 °C was obtained using an OMM design with an inlet gap of 127 μm and an exit gap of 727 μm over a 10 mm flow length. The OMM geometry also resulted in a dramatic reduction in pressure drop from 158.4 kPa for a plain chip and 62.1 kPa for a microchannel chip with a uniform manifold, to less than 10 kPa with the tapered OMM design. A tapered manifold (inlet and exit manifold heights of 127 and 727 μm, respectively) with microchannel provided the lowest pressure drop of 3.3 kPa.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W. S.
,
LaBianca
,
N. C.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K. C.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J. A.
, and
Schmidt
,
R. R.
,
2007
, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
218
225
.10.1109/TCAPT.2007.897977
3.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.10.1016/j.ijheatfluidflow.2003.11.005
4.
Bertsch
,
S.
,
Groll
,
E.
, and
Garimella
,
S.
,
2008
, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
187
227
.10.1080/15567260802317357
5.
Tibiriçá
,
C. B.
, and
Ribatski
,
G.
,
2013
, “
Flow Boiling in Micro-Scale Channels—Synthesized Literature Review
,”
Int. J. Refrig.
,
36
(
2
), pp.
301
324
.10.1016/j.ijrefrig.2012.11.019
6.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
7.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
8.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
9.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.10.1115/1.1839587
10.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.10.1115/1.2165208
11.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2267
2281
.10.1016/j.ijheatmasstransfer.2007.08.027
12.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2004
, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3631
3641
.10.1016/j.ijheatmasstransfer.2004.04.012
13.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2004
, “
Bubble Dynamics in Microchannels. Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5575
5589
.10.1016/j.ijheatmasstransfer.2004.02.031
14.
Lu
,
C. T.
, and
Pan
,
C.
,
2009
, “
A Highly Stable Microchannel Heat Sink for Convective Boiling
,”
J. Micromech. Microeng.
,
19
(
5
), p.
055013
.10.1088/0960-1317/19/5/055013
15.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Flow Boiling Stability in Microchannels
,”
Proceedings of the 3rd International Conference on Nanochannels, Microchannels and Minichannels
, Toronto, Canada, June 13–15, Paper No. ICNMM2005-75143.
16.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2005
, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
31
(
4
), pp.
371
392
.10.1016/j.ijmultiphaseflow.2005.01.003
17.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M. K.
,
Wen
,
J. T.
, and
Phelan
,
P.
,
2009
, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5661
5674
.10.1016/j.ijheatmasstransfer.2009.09.008
18.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Jin
,
L. W.
,
Chou
,
S. K.
,
Teo
,
C. J.
, and
Gao
,
S.
,
2011
, “
Experimental Investigations of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels—A Comparative Study
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2413
2421
.10.1016/j.ijthermalsci.2011.07.007
19.
Cho
,
E. S.
,
Koo
,
J.-M.
,
Jiang
,
L.
,
Prasher
,
R. S.
,
Kim
,
M. S.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2003
, “
Experimental Study on Two-Phase Heat Transfer in Microchannel Heat Sinks With Hotspots
,”
Nineteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
242
246
.
20.
Megahed
,
A.
,
2011
, “
Experimental Investigation of Flow Boiling Characteristics in a Cross-Linked Microchannel Heat Sink
,”
Int. J. Multiphase Flow
,
37
(
4
), pp.
380
393
.10.1016/j.ijmultiphaseflow.2010.12.002
21.
Sitar
,
A.
,
Sedmak
,
I.
, and
Golobic
,
I.
,
2012
, “
Boiling of Water and FC-72 in Microchannels Enhanced With Novel Features
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6446
6457
.10.1016/j.ijheatmasstransfer.2012.06.040
22.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
,
Jin
,
L.
, and
Balasubramanian
,
K.
,
2012
, “
Experimental Investigation and Flow Visualization to Determine the Optimum Dimension Range of Microgap Heat Sinks
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7623
7634
.10.1016/j.ijheatmasstransfer.2012.07.080
23.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.10.1016/S0017-9310(03)00044-9
24.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2007
, “
Local Measurement of Flow Boiling in Structured Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4513
4526
.10.1016/j.ijheatmasstransfer.2007.03.047
25.
Liu
,
D.
, and
Garimella
,
S. V.
,
2007
, “
Flow Boiling Heat Transfer in Microchannels
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1321
1332
.10.1115/1.2754944
26.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Teo
,
C. J.
, and
Chou
,
S. K.
,
2013
, “
Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
234
252
.10.1016/j.ijheatmasstransfer.2013.08.023
27.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.10.1115/1.4023574
28.
Kandlikar
,
S. G.
,
2013
, “
Heat Transfer Enhancement Through Flow Field Incorporating a Taper
,” patent pending.
You do not currently have access to this content.