This work focuses on a comparison of second law based component design on one hand and second law based system design on the other within the context of electronics cooling. Typical electronics cooling components such as a heat sink and a heat exchanger are modeled and designed towards minimum entropy generation on individual level and on system level. A comparison of these levels allows us to qualify and quantify the influences among components induced by a system. Simultaneously, this article endeavors to be an illustrated assessment of the usefulness of efficiency criteria on component level. It turns out that the results of this work reveal a substantial influence of system dependencies on the optimal component design. As such a note of caution is raised about second law based component design which does not take into account the system in which a component has to operate.

References

References
1.
Lebon
,
G.
,
Jou
,
D.
, and
Casas-Vázquez
,
J.
,
2008
,
Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers
,
Springer
,
New York.
2.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.10.1063/1.362674
3.
Chen
,
L.
,
Wu
,
C.
, and
Sun
,
F.
,
1999
, “
Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems
,”
J. Non-Equilib. Thermodyn.
,
24
(
4
), pp.
327
359
.
4.
Bejan
,
A.
,
2002
, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture
,”
Int. J. Energy Res.
,
26
(
7
), pp.
545
565
.
5.
Sciubba
,
E.
, and
Wall
,
G.
,
2007
, “
A Brief Commented History of Exergy From the Beginnings to 2004
,”
Int. J. Thermodyn.
,
10
(
1
), pp.
1
26
.
6.
Hepbasli
,
A.
,
2008
, “
A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future
,”
Renewable Sustainable Energy Rev.
,
12
(
3
), pp.
593
661
.10.1016/j.rser.2006.10.001
7.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley & Sons, Inc.
, New York.
8.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2007
,
Exergy: Energy, Environment, and Sustainable Development
,
Elsevier
, Oxford, UK.
9.
Moran
,
M. J.
, and
Sciubba
,
E.
,
1994
, “
Exergy Analysis: Principles and Practice
,”
ASME J. Eng. Gas Turbines Power
,
116
(
2
), pp.
285
290
.10.1115/1.2906818
10.
Hepbasli
,
A.
, and
Akdemir
,
O.
,
2004
, “
Energy and Exergy Analysis of a Ground Source (Geothermal) Heat Pump System
,”
Energy Convers. Manage.
,
45
(
5
), pp.
737
753
.
11.
Dincer
,
I.
,
2002
, “
On Thermal Energy Storage Systems and Applications in Buildings
,”
Energy Build.
,
34
(
4
), pp.
377
388
.10.1016/S0378-7788(01)00126-8
12.
Dincer
,
I.
, and
Sahin
,
A. Z.
,
2004
, “
A New Model for Thermodynamic Analysis of a Drying Process
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
645
652
.10.1016/j.ijheatmasstransfer.2003.08.013
13.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2003
, “
Exergoeconomic Analysis of Power Plants Operating on Various Fuels
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
643
658
.10.1016/S1359-4311(02)00244-2
14.
Shah
,
A. J.
, and
Patel
,
C. D.
,
2009
, “
Designing Environmentally Sustainable Electronic Cooling Systems Using Exergo-Thermo-Volumes
,”
Int. J. Energy Res.
,
33
(
14
), pp.
1266
1277
.10.1002/er.1532
15.
Shah
,
A. J.
,
Carey
,
V. P.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2006
, “
An Exergy-Based Figure-of-Merit for Electronic Packages
,”
ASME J. Electron. Packag.
,
128
(
4
), pp.
360
369
.10.1115/1.2351901
16.
Shah
,
A. J.
,
Carey
,
V. P.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2008
, “
Exergy Analysis of Data Center Thermal Management Systems
,”
ASME J. Heat Transfer
,
130
(
2
), pp.
1
10
.10.1115/1.2787024
17.
Hoffmann
,
K. H.
,
Andresen
,
B.
, and
Salamon
,
P.
,
1989
, “
Measures of Dissipation
,”
Phys. Rev. A
,
39
(
7
), pp.
3618
3621
.10.1103/PhysRevA.39.3618
18.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization the Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
, Boca Raton, FL.
19.
Badescu
,
V.
,
2004
, “
Optimal Paths for Minimizing Lost Available Work During Usual Finite-Time Heat Transfer Processes
,”
Non-Equilib. Thermodyn.
,
29
(
1
), pp.
53
73
.
20.
Aceves-Saborio
,
S.
,
Ranasinghe
,
J.
, and
Reistad
,
G.
,
1989
, “
An Extension to the Irreversibility Minimization Analysis Applied to Heat Exchangers
,”
ASME J. Heat Transfer
,
111
, pp.
29
36
.10.1115/1.3250654
21.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
1011
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
22.
Ratts
,
E. B.
, and
Raut
,
A. G.
,
2004
, “
Entropy Generation Minimization of Fully Developed Internal Flow With Constant Heat Flux
,”
J. Heat Transfer
,
126
(
4
), pp.
656
659
.10.1115/1.1777585
23.
Ko
,
T.
,
2006
, “
Analysis of Optimal Reynolds Number for Developing Laminar Forced Convection in Double Sine Ducts Based on Entropy Generation Minimization Principle
,”
Energy Convers. Manage.
,
47
(
6
), pp.
655
670
.10.1016/j.enconman.2005.05.024
24.
Abbassi
,
H.
,
2007
, “
Entropy Generation Analysis in a Uniformly Heated Microchannel Heat Sink
,”
Energy
,
32
(
10
), pp.
1932
1947
.10.1016/j.energy.2007.02.007
25.
Sahiti
,
N.
,
Krasniqi
,
F.
,
Fejzullahu
,
X.
,
Bunjaku
,
J.
, and
Muriqi
,
A.
,
2008
, “
Entropy Generation Minimization of a Double-Pipe Pin Fin Heat Exchanger
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2337
2344
.10.1016/j.applthermaleng.2008.01.026
26.
Naterer
,
G. F.
, and
Camberos
,
J. A.
,
2008
,
Entropy Based Design and Analysis of Fluids Engineering Systems
,
CRC Press
, Boca Raton, FL.
27.
Jian-Hui
,
Z.
,
Chun-Xin
,
Y.
, and
Li-Na
,
Z.
,
2009
, “
Minimizing the Entropy Generation Rate of the Plate-Finned Heat Sinks Using Computational Fluid Dynamics and Combined Optimization
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1872
1879
.10.1016/j.applthermaleng.2008.08.001
28.
Khan
,
W.
,
Culham
,
J.
, and
Yovanovich
,
M.
,
2009
, “
Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
,”
IEEE Trans. Compon. Packag. Technol
,
32
(
2
), pp.
243
251
.10.1109/TCAPT.2009.2022586
29.
Chowdhury
,
K.
, and
Sarangi
,
S. K.
,
1983
, “
A Second Law Analysis of the Concentric Tube Heat Exchanger: Optimisation of Wall Conductivity
,”
Int. J. Heat Mass Transfer
,
26
(
5
), pp.
783
786
.10.1016/0017-9310(83)90029-7
30.
Lin
,
W. W.
, and
Lee
,
D. J.
,
1997
, “
Second-Law Analysis on a Pin-Fin Array Under Crossflow
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1937
1945
.10.1016/S0017-9310(96)00240-2
31.
Hesselgreaves
,
J. E.
,
2000
, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4189
4204
.10.1016/S0017-9310(99)00364-6
32.
Yilmaz
,
M.
,
Sara
,
O. N.
, and
Karsli
,
S.
,
2001
, “
Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis
,”
Int. J. Exergy
,
1
(
4
), pp.
278
294
.10.1016/S1164-0235(01)00034-6
33.
Bar-Cohen
,
A.
, and
Iyengar
,
M.
,
2003
, “
Least-Energy Optimization of Air-Cooled Heat Sinks for Sustainable Development
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
16
25
.10.1109/TCAPT.2003.811463
34.
Paisam
,
N.
,
2006
, “
Second Law Analysis on the Heat Transfer of the Horizontal Concentric Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
33
(
8
), pp.
1029
1041
.10.1016/j.icheatmasstransfer.2006.05.001
35.
Culham
,
J. R.
,
Khan
,
W. A.
,
Yovanovich
,
M. M.
, and
Muzychka
,
Y. S.
,
2007
, “
The Influence of Material Properties and Spreading Resistance in the Thermal Design of Plate Fin Heat Sinks
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
76
81
.10.1115/1.2429713
36.
Moran
,
J. M.
, and
Shapiro
,
H. N.
,
2006
,
Fundamentals of Engineering Thermodynamics
, 5th ed.,
John Wiley & Sons, Inc.
, Chichester, UK.
37.
Lin
,
W.
, and
Lee
,
D.
,
2000
, “
Second-Law Analysis on a Flat Plate-Fin Array Under Crossflow
,”
Int. Commun. Heat Mass Transfer
,
27
(
2
), pp.
179
190
.10.1016/S0735-1933(00)00099-3
38.
Culham
,
J.
, and
Muzychka
,
Y.
,
2001
, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
159
165
.10.1109/6144.926378
39.
Ogiso
,
K.
,
2001
, “
Assessment of Overall Cooling Performance in Thermal Design of Electronics Based on Thermodynamics
,”
ASME J. Heat Transfer
,
123
, pp.
999
1005
.10.1115/1.1387025
40.
Shih
,
C.
, and
Liu
,
G.
,
2004
, “
Optimal Design Methodology of Plate-Fin Heat Sinks for Electronic Cooling Using Entropy Generation Strategy
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
3
), pp.
551
559
.10.1109/TCAPT.2004.831812
41.
Shuja
,
S. Z.
,
Zubair
,
S. M.
, and
Shazli
,
S. Z.
,
2007
, “
Optimization of a Finned Heat Sink Array Based on Thermoeconomic Analysis
,”
Int. J. Energy Res.
,
31
(
5
), pp.
455
471
.10.1002/er.1258
42.
Chen
,
C.-T.
,
Wu
,
C.-K.
, and
Hwang
,
C.
,
2008
, “
Optimal Design and Control of CPU Heat Sink Processes
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
184
195
.10.1109/TCAPT.2008.916855
43.
Gielen
,
R.
,
Rogiers
,
F.
,
Joshi
,
Y.
, and
Baelmans
,
M.
,
2011
, “
On the Use of Second Law Based Cost Functions in Plate Fin Heat Sink Design
,”
27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)
, pp.
81
88
.
44.
Mironova
, V
. A.
,
Tsirlin
,
A. M.
,
Kazakov
, V
. A.
, and
Berry
,
R. S.
,
1994
, “
Finite-Time Thermodynamics: Exergy and Optimization of Time-Constrained Processes
,”
J. Appl. Phys.
,
76
(
2
), pp.
629
636
.10.1063/1.358425
45.
Bejan
,
A.
,
1995
, “
Theory of Heat Transfer-Irreversible Power Plants–II. The Optimal Allocation of Heat Exchange Equipment
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
433
444
.10.1016/0017-9310(94)00184-W
46.
Andresen
,
B.
,
1999
,
Thermodynamic Optimization of Complex Energy Systems
, 1st ed.,
Springer
,
New York
.
47.
Durmayaz
,
A.
,
Sogut
,
O. S.
,
Sahin
,
B.
, and
Yavuz
,
H.
,
2004
, “
Optimization of Thermal Systems Based on Finite-Time Thermodynamics and Thermoeconomics
,”
Prog. Energy Combust. Sci.
,
30
(
2
), pp.
175
217
.10.1016/j.pecs.2003.10.003
48.
Kays
,
W. M.
, and
London
,
A. L.
,
1964
,
Compact Heat Exchangers
, 2nd ed.,
McGraw-Hill
,
New York
.
49.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2009
, “
Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4317
4326
.10.1016/j.ijheatmasstransfer.2009.03.069
50.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
51.
Lienhard
, IV,
J.
, and
Lienhard
,
V, J.
,
2008
,
A Heat Transfer Handbook
, 3rd ed.,
Phlogiston Press
,
Cambridge, MA
.
52.
Dong
,
J.
,
Chen
,
J.
,
Chen
,
Z.
,
Zhang
,
W.
, and
Zhou
,
Y.
,
2007
, “
Heat Transfer and Pressure Drop Correlations for the Multi-Louvered Fin Compact Heat Exchangers
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1506
1515
.10.1016/j.enconman.2006.11.023
53.
Kim
,
M.-H.
, and
Bullard
,
C. W.
,
2002
, “
Air-Side Thermal Hydraulic Performance of Multi-Louvered Fin Aluminum Heat Exchangers
,”
Int. J. Refrigeration
,
25
(
3
), pp.
390
400
.10.1016/S0140-7007(01)00025-1
54.
Incropera
,
F. D.
, and
De Witt
,
D. P.
,
1990
,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
John Wiley & Sons
,
New York
.
55.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook
,
John Wiley & Sons
, New York.
56.
Rump
,
S. M.
,
1999
, “
INTLAB—INTerval LABoratory
,”
Developments in Reliable Computing
,
T.
Csendes
, ed.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
77
104
.
You do not currently have access to this content.