Recently, a group of scientists introduced a new quantity for the analysis of heat transfer problems. They called it entransy since according to their understanding it is both, an indication of the nature of energy as well as that of the heat transfer ability. This concept is critically assessed on the background of two questions: Is entransy as an extension of the well established theory of heat transfer consistent with this classical approach? And: Is there a real need for the extension of the classical theory by introducing entransy as a quantity that was missing in the past?

References

References
1.
McCann
,
H. G.
,
1978
,
Chemistry Transformed: The Paradigmatic Shift from Phlogiston to Oxygen
,
Ablex Publishing Corporation
,
Norwood, NJ
.
2.
Chen
,
Q.
,
Liang
,
X.-G.
, and
Guo
,
Z.-Y.
,
2011
, “
Entransy—A Novel Theory in Heat Transfer Analysis and Optimization
,”
Developments in Heat Transfer
,
M. A.
dos Santos Bernardes
, ed.,
InTech
,
Rijeka, Croatia, (HR)
, pp.
349
372
.
3.
Guo
,
Z.-Y.
,
Zhu
,
H.-Y.
, and
Liang
,
X.-G.
,
2007
, “
Entransy—A Physical Quantity Describing Heat Transfer Ability
,”
Int. J. Heat Mass Transfer
,
50
(
13, 14
), pp.
2545
2556
.10.1016/j.ijheatmasstransfer.2006.11.034
4.
Xu
,
M.
,
2011
, “
Entransy Dissipation Theory and its Application in Heat Transfer
,”
Developments in Heat Transfer
,
M. A.
dos Santos Bernardes
, ed.,
InTech
,
Rijeka, Croatia, (HR)
, pp.
247
272
.
5.
Guo
,
Z.
,
Cheng
,
X.
, and
Xia
,
Z.
,
2003
, “
Least Dissipation Principle of Heat Transport Potential Capacity and its Application in Heat Conduction Optimization
,”
Chin. Sci. Bull.
,
48
(
4
), pp.
406
410
.
6.
Chen
,
Q.
, and
Xu
,
Y.-C.
,
2012
, “
An Entransy Dissipation-Based Optimization Principle for Building Central Chilled Water Systems
,”
Energy
,
37
(
1
), pp.
571
579
.10.1016/j.energy.2011.10.047
7.
Guo
,
J.
, and
Xu
,
M.
,
2012
, “
The Application of Entransy Dissipation Theory in Optimization Design of Heat Exchanger
,”
Appl. Therm. Eng.
,
36
, pp.
227
235
.10.1016/j.applthermaleng.2011.12.043
8.
Guo
,
J.
, and
Huai
,
X.
,
2012
, “
Optimization Design of Recuperator in a Chemical Heat Pump System Based on Entransy Dissipation Theory
,”
Energy
,
41
(
1
), pp.
335
343
.10.1016/j.energy.2012.03.007
9.
Xu
,
Y.-C.
, and
Chen
,
Q.
,
2012
, “
An Entransy Dissipation-Based Method for Global Optimization of District Heating Networks
,”
Energy Build.
,
48
, pp.
50
60
.10.1016/j.enbuild.2012.01.008
10.
Xu
,
M.
,
2012
, “
Variational Principles in Terms of Entransy for Heat Transfer
,”
Energy
,
44
(
1
), pp.
973
977
.10.1016/j.energy.2012.04.053
11.
Cheng
,
X.
, and
Liang
,
X.
,
2012
, “
Entransy Loss in Thermodynamic Processes and its Application
,”
Energy
,
44
(
1
), pp.
964
972
.10.1016/j.energy.2012.04.054
12.
Cheng
,
X.
, and
Liang
,
X.
,
2012
, “
Optimization Principles for Two-Stream Heat Exchangers and Two-Stream Heat Exchanger Networks
,”
Energy
,
46
(
1
), pp.
386
392
.10.1016/j.energy.2012.08.012
13.
Cheng
,
X.
, and
Liang
,
X.
,
2012
, “
Heat-Work Conversion Optimization of One-Stream Heat Exchanger Networks
,”
Energy
,
47
(
1
), pp.
421
429
.10.1016/j.energy.2012.08.041
14.
Chen
,
L.
,
Xiao
,
Q.
,
Xie
,
Z.
, and
Sun
,
F.
,
2012
, “
T-Shaped Assembly of Fins With Constructural Entransy Dissipation Rate Minimization
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1556
1562
.10.1016/j.icheatmasstransfer.2012.09.003
15.
Xu
,
M.
,
2011
, “
The Thermodynamic Basis of Entransy and Entransy Dissipation
,”
Energy
,
36
(
7
), pp.
4272
4277
.10.1016/j.energy.2011.04.016
16.
Zhou
,
S.
,
Chen
,
L.
,
Sun
,
F.
, and
Wu
,
C.
,
2002
, “
Cooling Load Density Optimization of an Irreversible Simple Brayton Refrigerator
,”
Open Syst. Inf. Dyn.
,
9
, pp.
325
337
.10.1023/A:1021854217387
17.
Tu
,
Y.
,
Chen
,
L.
,
Sun
,
F.
, and
Wu
,
C.
,
2006
, “
Cooling Load and Coefficient of Performance Optimizations for Real Air-Refrigerators
,”
Appl. Energy
,
83
, pp.
1289
1309
.10.1016/j.apenergy.2006.03.003
18.
Lucia
,
U.
,
2013
, “
Stationary Open Systems: A Brief Review on Contemporary Theories on Irreversibility
,”
Physica A
,
392
(
5
), pp.
1051
1062
.10.1016/j.physa.2012.11.027
19.
Grazzini
,
G.
,
Borchiellini
,
R.
, and
Lucia
U.
,
2013
, “
Entropy Versus Entransy
,”
J. Non-Equilib. Thermodyn.
,
38
(
3
), pp.
259
271
.10.1515/jnetdy-2013-0008
20.
Popper
,
K. R.
,
1984
,
Logik der Forschung
,
Mohr-Verlag
,
Tuebingen, Germany
.
21.
Herwig
,
H.
,
2007
, “
Die Irreführende Verwendung der Thermodynamischen Größe Enthalpie: Ein Didaktischer Sündenfall
,”
Forsch. Ingenieurwes.
,
71
, pp.
107
112
.10.1007/s10010-007-0049-5
22.
Moran
,
H.
, and
Shapiro
,
H.
,
2003
,
Fundamentals of Engineering Thermodynamics
,
5th ed.
,
John Wiley & Sons
,
New York
.
23.
Lucia
,
U.
,
2013
, “
Entropy and Exergy in Irreversible Renewable Energy Systems
,”
Renewable Sustainable Energy Rev.
,
20
(
1
), pp.
559
564
.10.1016/j.rser.2012.12.017
24.
Bejan
,
A.
,
2006
,
Advanced Engineering Thermodynamics
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
25.
Bejan
,
A.
,
1982
,
Entropy Generation through Heat and Fluid Flow
,
Wiley
,
New York
.
26.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
, pp.
1191
1218
.10.1063/1.362674
27.
Bejan
,
A.
,
Tsatsatronis
,
A.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
28.
Bajan
,
A.
, and
Lorente
,
S.
,
2010
, “
The Constructal Law of Design and Evolution in Nature
,”
Philos. Trans. R. Soc. B
,
365
, pp.
1335
1347
.10.1098/rstb.2009.0302
29.
Lucia
,
U.
,
1995
, “
Mathematical Consequences and Gyarmati's Principle in Rational Thermodynamics
,”
Il Nuovo Cimento B
,
110
(
10
), pp.
1227
1235
.10.1007/BF02724612
30.
Lucia
,
U.
,
2008
, “
Probability, Ergodicity, Irreversibility and Dynamical Systems
,”
Proc. R. Soc. A
,
464
, pp.
1089
1184
.10.1098/rspa.2007.0304
31.
Lucia
,
U.
,
2012
, “
Maximum or Minimum Entropy Generation for Open Systems?
,”
Physica A
,
391
(
12
), pp.
3392
3398
.10.1016/j.physa.2012.01.055
32.
Lucia
,
U.
,
2012
, “
Entropy Generation in Technical Physics
,”
Kuwait J. Sci. Eng.
,
39
(
2A
), pp.
91
101
.
33.
Lucia
,
U.
,
2013
, “
Carnot Efficiency: Why?
,”
Physica A
,
392
(
17
), pp.
3513
3517
.10.1016/j.physa.2013.04.020
34.
Lucia
,
U.
, and
Sciubba
,
E.
,
2013
, “
From Lotka to the Entropy Generation Approach
,”
Physica A
,
392
(
17
), pp.
3634
3639
.10.1016/j.physa.2013.04.025
35.
Lucia
,
U.
,
2013
, “
Thermodynamic Paths and Stochastic Order in Open Systems
,”
Physica A
,
392
(
18
), pp.
3912
3919
.10.1016/j.physa.2013.04.053
36.
Lucia
,
U.
,
2013
, “
Entropy Generation: From Outside to Inside!
,”
Chem. Phys. Lett.
,
583
, pp.
209
212
.10.1016/j.cplett.2013.07.075
37.
Lucia
,
U.
,
2013
, “
Exergy Flows as Bases of Constructal Law
,”
Physica A
,
392
(
24
), pp.
6284
6287
.10.1016/j.physa.2013.08.042
38.
Chen
,
Q.
,
Zhu
,
H. Y.
, and
Guo
,
Z. Y.
,
2011
, “
An Alternative Criterion in Heat Transfer Optimization
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
467
, pp.
1012
1028
.10.1098/rspa.2010.0293
39.
Herwig
,
H.
,
2011
, “
The Role of Entropy Generation in Momentum and Heat Transfer
,”
ASME J. Heat Transfer
,
134
, p.
031003
.10.1115/1.4005128
You do not currently have access to this content.