The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy–Brinkman–Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed.

References

References
1.
Khalkhali
,
H.
,
Faghri
,
A.
, and
Zuo
,
Z. J.
,
1999
, “
Entropy Generation in a Heat Pipe System
,”
Appl. Therm. Eng.
,
19
, pp.
1027
1043
.10.1016/S1359-4311(98)00089-1
2.
Zuo
,
Z. J.
, and
Faghri
,
A.
,
1997
, “
A Network Thermodynamic Analysis of the Heat Pipe
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1473
1484
.10.1016/S0017-9310(97)00220-2
3.
Cao
,
Y.
, and
Faghri
,
A.
,
1991
, “
Transient Multidimensional Analysis of Nonconventional Heat Pipes With Uniform and Nonuniform Heat Distributions
,”
ASME J. Heat Transfer
,
113
, pp.
995
1002
.10.1115/1.2911233
4.
Cao
,
Y.
, and
Faghri
,
A.
,
1993
, “
Conjugate Modelling of High-Temperature Nosecap and Wing Leading Edge Heat Pipes
,”
ASME J. Heat Transfer
,
115
, pp.
819
822
.10.1115/1.2910765
5.
Cotter
,
T. P.
,
1965
, “
Theory of Heat Pipes
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-3246-MS.
6.
Busse
,
C. A.
,
1967
, “
Pressure Drop in the Vapor Phase of Long Heat Pipes
,”
Thermionic Conversion Specialist Conference
,
Palo Alto, CA
.
7.
Woloshun
,
K. A.
,
Merrigan
,
M. A.
, and
Best
,
E. D.
,
1988
, “
HTPIPE: A Steady-State Heat Pipe Analysis Program
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-11324-M.
8.
Faghri
,
A.
,
Buchko
,
M.
, and
Cao
,
Y.
,
1991
, “
A Study of High-Temperature Heat Pipes With Multiple Heat Sources and Sinks: Part I-Experimental Methodology and Frozen Start-Up Profiles
,”
ASME J. Heat Transfer
,
113
, pp.
1003
1009
.10.1115/1.2911193
9.
Jang
,
J. H.
,
Faghri
,
A.
, and
Chang
,
W. S.
,
1991
, “
Analysis of the One-Dimensional Transient Compressible Vapor Flow in Heat Pipes
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2029
2037
.10.1016/0017-9310(91)90214-Y
10.
Jong
,
H.
,
Faghri
,
A.
,
Chang
,
W. S.
, and
Edward
,
T. M.
,
1990
, “
Mathematical Modelling and Analysis of Heat Pipe Start-Up From the Frozen State
,”
ASME J. Heat Transfer
,
112
, pp.
586
594
.10.1115/1.2910427
11.
Jang
,
J. H.
,
Faghri
,
A.
, and
Chang
,
W. S.
,
1989
, “
Analysis of the Transient Compressible Vapor Flow in Heat Pipe
,” Report No. NASA CR-185119.
12.
Rajashree
,
R.
, and
Sankara Rao
,
K.
,
1990
, “
A Numerical Study of the Performance of Heat Pipe
,”
Indian J. Pure Appl. Math.
,
21
(
1
), pp.
95
108
.
13.
Issacci
,
F.
,
Catton
,
I.
, and
Ghoniem
,
N. M.
,
1991
, “
Vapor Flow Patterns During Startup Transient in Heat Pipes
,”
Heat Transfer in Space Systems; Proceedings of the Symposium, AIAA/ASME Thermophysics and Heat Transfer Conference
,
Seattle, WA
, June 18–20, New York, pp.
41
47
.
14.
Tournier
,
J. M.
, and
El-Genk
,
M. S.
,
1994
, “
A Heat Pipe Transient Analysis Model
,”
Int. J. Heat Mass Transfer
,
37
(
5
), pp.
753
762
.10.1016/0017-9310(94)90113-9
15.
Tournier
,
J. M.
, and
El-Genk
,
M. S.
,
1996
, “
A Vapor Flow Model for Analysis of Liquid-Metal Heat Pipe Startup From a Frozen State
,”
Int. J. Heat Mass Transfer
,
39
(
18
), pp.
3767
3780
.10.1016/0017-9310(96)00066-X
16.
Zhu
,
N.
, and
Vafai
,
K.
,
1998
, “
Vapor and Liquid Flow in an Asymmetric Flat Plate Heat Pipe: A Three Dimensional Analytical and Numerical Investigation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
159
174
.10.1016/S0017-9310(97)00075-6
17.
Vafai
,
K.
, and
Wang
,
W.
,
1992
, “
Analysis of Flow and Heat Transfer Characteristics of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
35
(
9
), pp.
2087
2099
.10.1016/0017-9310(92)90054-V
18.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Analytical Solution of Forced Convective Heat Transfer in Tubes Partially Filled With Metallic Foam Using the Two-Equation Model
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3846
3855
.10.1016/j.ijheatmasstransfer.2011.04.044
19.
Nouri-Borujerdi
,
A.
, and
Layeghi
,
M.
,
2004
, “
Numerical Analysis of Vapor Flow in Concentric Annular Heat Pipes
,”
ASME J. Fluids Eng.
,
126
, pp.
442
448
.10.1115/1.1760549
20.
Zhu
,
N.
, and
Vafai
,
K.
,
1999
, “
Analysis of Cylindrical Heat Pipes Incorporating the Effects of Liquid-Vapor Coupling and Non-Darcian Transport—A Closed Form Solution
,”
Int. J. Heat Mass Transfer
,
37
, pp.
3405
3418
.10.1016/S0017-9310(99)00017-4
21.
Faghri
,
A.
,
1991
, “
Analysis of Frozen Start-Up of High Temperature Heat Pipes and Three Dimensional Modelling of Block-Heated Heat Pipes
,” Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, Report No. WL-TR-91-2086.
22.
Cao
,
Y.
, and
Faghri
,
A.
,
1990
, “
A Transient Two-Dimensional Compressible Analysis for High Temperature Heat Pipes With a Pulsed Heat Input
,”
J. Numer. Heat Transfer, Part A
,
18
, pp.
483
502
.10.1080/10407789008944804
23.
Faghri
,
A.
, and
Buchko
,
M.
,
1991
, “
Experimental and Numerical Analysis of Low Temperature Heat Pipes With Multiple Heat Sources
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
728
734
.10.1115/1.2910624
24.
Chang
,
W. S.
,
1996
, “
Startup of the Liquid-Metal Heat Pipe in Aerodynamic Heating Environments
,” Research, Development and Engineering Center, U.S. Army Missile Command Redstone Arsenal, Huntsville, AL, Report No. AL 35898-5247.
25.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
, pp.
195
203
.10.1016/0017-9310(81)90027-2
26.
Gutierrez
,
G.
,
Catano
,
J.
,
Jen
,
T. C.
, and
Liao
,
Q.
,
2006
, “
Transient Heat Transfer Analysis on a Heat Pipe With Experimental Validation
,”
Int. J. Transp. Phenom.
,
8
, pp.
165
179
.
27.
Chi
,
S. W.
,
1976
, “
Heat Pipe Theory and Practice
,”
A Sourcebook
,
Hemisphere Publishing Corporation
,
New York
.
28.
Ivanovskii
,
M. N.
, and
Sorokin
,
I. V.
,
1982
,
The Physical Principles of Heat Pipes
,
Clarendon Press
,
Oxford, UK
.
29.
Humberto
,
A. M.
, and
Ricardo
,
F. D. M.
,
2003
, “
Operation Limits for Rotating Cylindrical Heat Pipes
,”
Numer. Heat Transfer, Part A
,
44
(
3
), pp.
299
313
.10.1080/716100506
30.
Vafai
,
K.
,
Zhu
,
N.
, and
Wang
,
W.
,
1995
, “
Analysis of Asymmetric Disk-Shaped and Flat-Plate Heat Pipes
,”
ASME J. Heat Transfer
,
117
, pp.
209
218
.10.1115/1.2822305
31.
Faghri
,
A.
, and
Parvani
,
S.
,
1988
, “
Numerical Analysis of Laminar Flow in a Double-Walled Annular Heat Pipe
,”
J. Thermophys Heat Transfer
,
2
, pp.
165
171
.10.2514/3.81
You do not currently have access to this content.