The laminar forced convection of a heated rotating sphere in air has been studied using a three-dimensional immersed boundary based direct numerical simulation method. A regular Eulerian grid is used to solve the modified momentum and energy equations for the entire flow region simultaneously. In the region that is occupied by the rotating sphere, a moving Lagrangian grid is used, which tracks the rotational motion of the particle. A force density function or an energy density function is introduced to represent the momentum interaction or thermal interaction between the sphere and fluid. This numerical method is validated by comparing simulation results with analytical solutions of heat diffusion problem and other published experimental data. The flow structures and the mean Nusselt numbers for flow Reynolds number ranging from 0 to 1000 are obtained. We compared our simulation results of the mean Nusselt numbers with the correlations from the literature and found a good agreement for flow Reynolds number greater than 500; however, a significant discrepancy arises at flow Reynolds number below 500. This leads us to develop a new equation that correlates the mean Nusselt number of a heated rotating sphere for flows of 0Re500.

References

References
1.
Lien
,
F. S.
,
Chen
,
C. K.
, and
Cleaver
,
J. W.
,
1986
, “
Mixed and Free Convection Over a Rotating Sphere With Blowing and Suction
,”
ASME J. Heat Transfer
,
108
, pp.
398
404
.10.1115/1.3246936
2.
Palec
,
G. L.
, and
Daguenet
,
M.
,
1987
, “
Laminar Three-Dimensional Mixed Convection About a Rotating Sphere in Stream
,”
Int. J. Heat Mass Transfer
,
30
, pp.
1511
1523
.10.1016/0017-9310(87)90182-7
3.
Kreith
,
F.
,
Roberts
,
L. G.
,
Sullivan
,
J. A.
, and
Sinha
,
S. N.
,
1965
, “
Convection Heat Transfer Flow Phenomena of Rotating Sphere
,”
Int. J. Heat Mass Transfer
,
6
, pp.
881
895
.10.1016/0017-9310(63)90079-6
4.
Tieng
,
S. M.
, and
Yan
,
A. C.
,
1993
, “
Experimental Investigation on Convective Heat Transfer of Heated Rotating Sphere
,”
Int. J. Heat Mass Transfer
,
36
, pp.
599
610
.10.1016/0017-9310(93)80035-S
5.
Zheng
,
G.
, and
List
,
R.
,
1996
, “
Convective Heat Transfer of Rotating Spheres and Spheroids With Non-Uniform Surface Temperatures
,”
Int. J. Heat Mass Transfer
,
39
, pp.
1815
1826
.10.1016/0017-9310(95)00277-4
6.
Farouk
,
B.
,
1985
, “
Mixed Convective Flow Around a Slowly Rotating Isothermal Sphere
,”
ASME J. Heat Transfer
,
107
, pp.
431
438
.10.1115/1.3247433
7.
Dorfman
,
L. A.
, and
Serazetdinov
,
A. Z.
,
1973
, “
Laminar Flow and Heat Transfer Near Rotating Axisymmetric Surface
,”
Int. J. Heat Mass Transfer
,
8
, pp.
317
327
.10.1016/0017-9310(65)90119-5
8.
Banks
,
W. H. H.
,
1965
, “
The Thermal Laminar Boundary Layer on Rotating Sphere
,”
J. Appl. Math. Phys.
,
16
, pp.
780
788
.10.1007/BF01614105
9.
Antar
,
M. A.
, and
El-Shaarawi
,
M. A. I.
,
2004
, “
Simultaneous Effect of Rotation and Natural Convection on the Flow About a Liquid Sphere
,”
Heat Mass Transfer
,
40
, pp.
393
399
.10.1007/s00231-003-0429-9
10.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2008
, “
Inclusion of Heat Transfer Computations for Particle Laden Flows
,”
Phys. Fluids
,
20
, pp.
675
684
.10.1063/1.2911022
11.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2009
, “
Heat Transfer in Particulate Flows With Direct Numerical Simulation (DNS)
,”
Int. J. Heat Mass Transfer
,
52
, pp.
777
786
.10.1016/j.ijheatmasstransfer.2008.07.023
12.
Peskin
,
C.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys
,
25
, pp.
220
252
.10.1016/0021-9991(77)90100-0
13.
Mohd-Yusof
,
J.
,
1997
, “
Combined Immersed Boundaries/b-Splines Methods for Simulations of Flows in Complex Geometries
,” Annual Research Briefs, Center for Turbulence Research, Stanford University, Stanford, CA, Vol.
161
, pp.
35
60
.
14.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2005
, “
Proteus: A Direct Forcing Method in the Simulations of Particulate Flow
,”
J. Comput. Phys.
,
202
, pp.
20
51
.10.1016/j.jcp.2004.06.020
15.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
, pp.
448
476
.10.1016/j.jcp.2005.03.017
16.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2010
, “
Robust Treatment of No-Slip Boundary Condition and Velocity Updating for the Lattice-Boltzmann Simulation of Particulate Flows
,”
Comput. Fluids
,
38
, pp.
370
381
.10.1016/j.compfluid.2008.04.013
17.
Wang
,
Z.
,
Fan
,
J.
,
Luo
,
K.
, and
Chen
,
K.
,
2009
, “
Immersed Boundary Method for the Simulation of Flows With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4510
4518
.10.1016/j.ijheatmasstransfer.2009.03.048
18.
Kang
,
S. K.
, and
Hassan
,
Y. A.
,
2011
, “
A Direct-Forcing Immersed Boundary Method for the Thermal Lattice Boltzmann Method
,”
Comput. Fluids
,
49
, pp.
36
45
.10.1016/j.compfluid.2011.04.016
19.
Deen
,
N.
,
Kriebitzsch
,
S.
,
van der Hoef
,
M.
, and
Kuipers
,
J.
,
2012
, “
Direct Numerical Simulation of Flow and Heat Transfer in Dense Fluid-Particle Systems
,”
Chem. Eng. Sci.
,
81
, pp.
329
344
.10.1016/j.ces.2012.06.055
20.
Wachs
,
A.
,
2011
, “
Rising of 3D Catalyst Particles in a Natural Convection Dominated Flow by a Parallel DNS Method
,”
Comput. Chem. Eng.
,
35
, pp.
2169
2185
.10.1016/j.compchemeng.2011.02.013
You do not currently have access to this content.