When the transient hot-wire method is used to measure the thermal conductivity of very low thermal conductivity silica aerogel (in the range of 10 mW/m·K at 1 atm) end effects due to the finite wire size and radiation corrections must be considered. An approximate method is presented to account for end effects with realistic boundary conditions. The method was applied to small experimental samples of the aerogel using different wire lengths. Initial conductivity results varied with wire length. This variation was eliminated by the use of the end effect correction. The test method was validated with the NIST (National Institute of Standards and Technology) Standard Reference Material 1459, fumed silica board to within 1 mW/m·K. The aerogel is semitransparent. Due to the small wire radius and short transient, radiation heat transfer may not be fully accounted for. In a full size aerogel panel radiation will augment the phonon conduction by a larger amount.

References

References
1.
“Hot Disk AB—Technology, accessed 11-May-2011, http://www.hotdiskinstruments.com/home/technology.html
2.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbot
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity
,
Heat Capacity
,
and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.10.1063/1.1728417
3.
Schiffres
,
S.
, and
Malen
,
J.
,
2011
, “
Improved 3-Omega Measurement of Thermal Conductivity in Liquids
,
Gases
,
and Powders Using a Metal Coated Optical Fiber
,”
Rev. Sci. Instrum.
,
82
, p. 064903.10.1063/1.3593372
4.
Cahill
,
D.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: the 3-Omega Method
,”
Rev. Sci. Instrum.
,
61
(
2
), p. 802.10.1063/1.1141498
5.
Assael
,
M. J.
,
Antoniadis
,
K. D.
, and
Wakeham
,
W. A.
,
2010
, “
Historical Evolution of the Transient Hot-Wire Technique
,”
Int. J. Thermophys.
,
31
(
6
), pp.
1051
1072
.10.1007/s10765-010-0814-9
6.
Labudova
,
G.
, and
Vozarova
,
V.
,
2002
, “
Uncertainty of the Thermal Conductivity Measurement Using the Transient Hot Wire Method
,
J. Therm Anal. Calorim.
,
67
, pp.
257
263
.10.1023/A:1013774922355
7.
Gustafsson
,
S. E.
,
Karawacki
,
E.
, and
Khan
,
M. N.
,
1979
, “
Transient Hot-Strip Method for Simultaneously Measuring Thermal Conductivity and Thermal Diffusivity of Solids and Fluids
,”
J. Phys. D: Appl. Phys.
,
12
, p.
1411
.10.1088/0022-3727/12/9/003
8.
Liang
,
X.
,
1995
, “
The Boundary Induced Error on the Measurement of Thermal Conductivity by Transient Hot Wire Method
,”
Meas. Sci. Technol.
,
6
, pp.
467
471
.10.1088/0957-0233/6/5/005
9.
Hammerschmidt
,
U.
, and
Sabuga
,
W.
,
2000
, “
Transient Hot Wire (THW) Method: Uncertainty Assessment
,”
Int. J. Thermophys.
,
21
(
6
), pp.
1255
1278
.10.1023/A:1006649209044
10.
Blackwell
,
J. H.
,
1956
, “
The Axial Flow Error in the Thermal Conductivity Probe
,”
Can. J. Phys.
,
34
, pp.
412
–417.10.1139/p56-048
11.
Kierkus
,
W. T.
,
Mani
,
N.
, and
Venart
,
J. E. S.
,
1973
, “
Radial-Axial Transient Heat Conduction in a Region Bounded Internally by a Circular Cylinder of Finite length and Appreciable Heat Capacity
,”
Can. J. Phys.
,
51
, pp.
1182
–1186.10.1139/p73-157
12.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon
,
Oxford, UK.
13.
Gao
,
J. W.
,
Zheng
,
R. T.
,
Ohtani
,
H.
,
Zhu
,
D. S.
, and
Chen
,
G.
,
2009
, “
Experimental Investigation of Heat Conduction Mechanisms in Nanofluids. Clue on Clustering
,”
Nano Lett.
,
9
(12), pp.
4128
4132
.10.1021/nl902358m
14.
Schmidt
,
A. J.
,
Chiesa
,
M.
,
Torchinsky
,
D. H.
,
Johnson
,
J. A.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2008
, “
Thermal Conductivity of Nanoparticle Suspensions in Insulating Media Measured With a Transient Optical Grating and a Hotwire
,”
J. Appl. Phys.
,
103
(
8
), p. 083529.
15.
Nagasaka
,
Y.
, and
Nagashima
,
A.
,
1981
, “
Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Phys. E
,
14
(
12
), pp.
1435
1440
.10.1088/0022-3735/14/12/020
16.
“Cabot Aerogel: Aerogel for Insulation, Daylighting, Additives—Cabot Corporation,” accessed 16-Mar-2011, http://www.cabot-corp.com/aerogel
17.
Le Bail
,
A.
,
Danes
,
F. E.
, and
Bardon
,
J. P.
,
1990
, “
Measurement of the Thermal Conductivity of Argon at High Temperature and High Pressure by Transient Hot-Wire Method
,”
Thermal Conductivity 21
, C. J. Cremers and H.A. Fine, eds., Plenum Press, New York.
18.
Assael
,
M. J.
, and
Gialou
,
K.
,
2003
, “
A Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids up to 590 K
,”
Int. J. Thermophys.
,
24
(
3
), pp.
667
674
.10.1023/A:1024080030912
19.
De Groot
,
J. J.
,
Kestin
,
J.
, and
Sookiazian
,
H.
,
1974
, “
Instrument to Measure the Thermal Conductivity of Gases
,”
Physica
,
75
(
3
), pp.
454
482
.10.1016/0031-8914(74)90341-3
20.
Kestin
,
J.
, and
Wakeham
,
W. A.
,
1978
, “
A Contribution to the Theory of the Transient Hot-Wire Technique for Thermal Conductivity Measurements
,”
Physica A
,
92
(
1–2
), pp.
102
116
.10.1016/0378-4371(78)90023-7
21.
Gross
,
U.
, and
Tran
,
L.-T.-S.
,
2004
, “
Radiation Effects on Transient Hot-Wire Measurements in Absorbing and Emitting Porous Media
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3279
3290
.10.1016/j.ijheatmasstransfer.2004.02.014
You do not currently have access to this content.