Measured values of heat transfer and pressure loss are presented for a variety of porous graphite foams in subsonic turbulent airflow. These foams were developed over the last decade to find combinations of high conductivity, porosity, strength, and low density suitable for application to rapid cooling of electronics and to corrosionless heat-exchangers. Measured maxima in the thermal performance that is the ratio of heat transfer to pressure loss, were correlated the pore structure obtained from scanning electron microscopy, to show a linear dependence of thermal performance on the average diameter of interpore windows representative of the cross-sectional area through which cooling air flows. For the same heat transfer, measured pressure losses were reduced by over two orders of magnitude by increasing pore and window diameters. However, the best thermal performance of porous graphite foams that were strong enough for industrial application, had measured pressure losses that were more than an order of magnitude greater than losses in conventional finned heat exchangers.

References

References
1.
Johnson
,
I.
,
William
,
T.
,
Choate
,
W. T.
, and
Amber Davidson
,
A.
,
2008
, “
Waste Heat Recovery: Technology and Opportunities in US Industry
,” US Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program.
2.
Roos
,
C. J.
,
2009
, “
An Overview of Industrial Waste Heat Recovery Technologies for Moderate Temperatures Less Than 1000°F
,” U.S. Department of Energy, Industrial Technologies Program, Report WSUEEP09-26.
3.
DeFrees
,
J.
,
Stuckey
,
R.
, and
Foote
,
J.
,
2007
, “
Condensing Economizers
,”
ASHRAE J.
,
11
, pp.
16
23
.
4.
Butcher
,
T.
,
2007
, “
Condensing Economizers
,” Perry's Chemical Engineer's Handbook, 8th ed., McGraw-Hill, New York, p. 53.
5.
Gallego
,
C. N.
, and
Klett
,
W. J.
,
2003
, “
Carbon Foams for Thermal Management
,”
Carbon
,
41
, pp.
1461
1466
.10.1016/S0008-6223(03)00091-5
6.
Sheil
,
B. J.
,
Evans
,
R. B.
, and
Watson
,
G. M.
,
1959
, “
Molten Salt-Graphite Compatibility Tests—Results of Physical and Chemical Measurements
,” ORNL Report 59-8-133.
7.
Jayman
,
Y.
, and
Mohamad
,
A. A.
,
2007
, “
Enhanced Heat Transfer Using Porous Carbon Foam in Cross Flow
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
735
742
.10.1115/1.2717240
8.
Jamin
,
Y. L.
, and
Mohamad
,
A. A.
,
2008
, “
Natural Convection Heat Transfer Enhancements From a Cylinder Using Porous Carbon Foam: Experimental Study
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122502
.10.1115/1.2977606
9.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
, pp.
263
272
.10.1115/1.1429637
10.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
, pp.
557
565
.10.1115/1.1287793
11.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Yu
,
Q.
, and
Thompson
,
B. E.
,
2007
, “
Forced Convection Heat Transfer and Hydraulic Losses in Graphitic Foam
,”
ASME J. Heat Transfer
,
129
, pp.
1237
1245
.10.1115/1.2739621
12.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
, pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
13.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Yu
,
Q.
, and
Thompson
,
B. E.
,
2006
, “
Characterization of Porous Carbon Foam as a Material for Compact Recuperators
,”
Proceedings of ASME Turbo Expo
, Barcelona, Spain.
14.
Campagna
,
M.
,
2007
, “
Graphite Foam Heat Exchanger (Radiator) Test
,” Caterpillar Inc., Oak Ridge National Laboratory, Final Report, Contract 40005339.
15.
Klett
,
W. J.
,
Hardy
,
R.
,
Romine
,
E.
,
Walls
,
C.
, and
Burchell
,
T.
,
2000
, “
High-Thermal Conductivity, Mesophase-Pitch-Derived Carbon Foam: Effect of Precursor on Structure and Properties
,”
Carbon
,
38
, pp.
953
973
.10.1016/S0008-6223(99)00190-6
16.
Contescu
,
C. I.
,
Azad
,
S.
,
Miller
,
D.
,
Lance
,
M. J.
,
Baker
,
F. S.
, and
Burchell
,
T. D.
,
2008
, “
Practical Aspects for Characterizing Air Oxidation of Graphite
,”
J. Nucl. Mater.
,
381
, pp.
15
24
.10.1016/j.jnucmat.2008.07.020
17.
Moormann
,
R.
,
Hinssen
,
H. K.
,
Krussenberg
,
A. K.
,
Stauch
,
B.
, and
Wu
,
C. H.
,
1994
, “
Investigation of Oxidation Resistance of Carbon First-Wall Liner Materials of Fusion Reactors
,”
J. Nucl. Mater.
,
212–215
, pp.
1178
1182
.10.1016/0022-3115(94)91017-0
18.
Yu
,
Q.
,
Thompson
,
B. E.
, and
Straatman
,
A. G.
,
2006
, “
A Unit-Cube Based Model for Heat Transfer and Pressure Loss in Porous Carbon Foam
,”
ASME J. Heat Transfer
,
128
, pp.
352
360
.10.1115/1.2165203
19.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
, p.
32
.
20.
Taylor
,
G. I.
,
1971
, “
A Model for the Boundary Condition of a Porous Material. Part 1
,”
J. Fluid Mech.
,
49
, pp.
319
326
.10.1017/S0022112071002088
21.
Antohe
,
B. V.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
,
1997
, “
Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices
,”
ASME J. Fluids Eng.
,
119
, pp.
404
412
.10.1115/1.2819148
22.
Alam
,
M. K.
, and
Maruyama
,
B.
,
2004
, “
Thermal Conductivity of Graphitic Carbon Foams
,”
Exp. Heat Transfer
,
17
, pp.
227
241
.10.1080/08916150490449055
23.
DeJong
,
N. C.
, and
Jacobi
,
A. M.
,
2003
, “
Heat Transfer and Pressure Drop for Flow Through Bounded Louvered-Fin Arrays
,”
Exp. Therm. Fluid Sci.
,
27
, pp.
237
250
.10.1016/S0894-1777(02)00224-8
You do not currently have access to this content.