This paper is devoted to the study of heat and mass transfer characteristics of some nanofluid flows past an infinite flat plate moving vertically. Some water-based nanofluids containing copper (Cu), silver (Ag), copper oxide (CuO), alumina (Al2O3), and titanium oxide (TiO2) are analytically analyzed taking into consideration the thermal radiation effect for two types of temperature boundary conditions. The physically significant properties like skin friction coefficient and Nusselt number are easy to conceive from the derived exact analytical expressions for the velocity and temperature profiles. Results are believed to constitute a tool to verify the validity of numerical solutions for more complicated transient free/forced convection nanofluid flow problems.

References

1.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.10.1002/9780470180693
2.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
, pp.
613
630
.10.1590/S0104-66322008000400001
3.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part II: Experiments and Applications
,”
Braz. J. Chem. Eng.
,
25
, pp.
631
648
.10.1590/S0104-66322008000400002
4.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3187
3196
.10.1016/j.ijheatmasstransfer.2009.02.006
5.
Eagen
,
J.
,
Rusconi
,
R.
,
Piazza
,
R.
, and
Yip
,
S.
,
2010
, “
The Classical Nature of Thermal Conduction in Nanofluids
,”
ASME J. Heat Transfer
,
132
, p.
102402
.10.1115/1.4001304
6.
Fan
,
J.
, and
Wang
,
L.
,
2011
, “
Review of Heat Conduction in Nanofluids
,”
ASME J. Heat Transfer
,
133
, p.
040801
.10.1115/1.4002633
7.
Raptis
,
A.
,
1983
, “
Unsteady Free Convection Flow Through a Porous Medium
,”
Int. J. Eng. Sci.
,
21
, pp.
345
348
.10.1016/0020-7225(83)90118-0
8.
Lai
,
F. C.
, and
Kulacki
,
F. A.
,
1991
, “
Non-Darcy Mixed Convection Along a Vertical Wall in a Saturated Porous Medium
,”
ASME J. Heat Transfer
,
113
, pp.
252
255
.10.1115/1.2910537
9.
Hossain
,
M. A.
,
Khanafer
,
K.
, and
Vafai
,
K.
,
2001
, “
The Effect of Radiation on Free Convection Flow of Fluid With Variable Viscosity From a Porous Vertical Plate
,”
Int. J. Thermal Sci.
,
40
, pp.
115
124
.10.1016/S1290-0729(00)01200-X
10.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Thermal Sci.
,
49
, pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
11.
Mahdy
,
A.
, and
ElShehabey
,
H. M.
,
2012
, “
Uncertainties in Physical Property Effects on Viscous Flow and Heat Transfer Over a Nonlinearly Stretching Sheet With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
713
719
.10.1016/j.icheatmasstransfer.2012.03.019
12.
Turkyilmazoglu, M., 2012, “
Exact Analytical Solutions for Heat and Mass Transfer of MHD Slip Flow in Nanofluids
,”
Chem. Eng. Sci.
,
84
, pp.
182
187
.10.1016/j.ces.2012.08.029
13.
Turkyilmazoglu, M., and Pop, I., 2012, “
Soret and Heat Source Effects on the Unsteady Radiative MHD Free Convection Flow From an Impulsively Started Infinite Vertical Plate
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7635
7644
.10.1016/j.ijheatmasstransfer.2012.07.079
14.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augment in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2002
2018
.10.1016/j.ijheatmasstransfer.2006.09.034
You do not currently have access to this content.