Due to the inherently unsteady environment of reciprocating engines, unsteady thermal boundary layer modeling may improve the reliability of simulations of internal combustion engine heat transfer. Simulation of the unsteady thermal boundary layer was achieved in the present work based on an effective variable thermal conductivity from different turbulent Prandtl number and turbulent viscosity models. Experiments were also performed on a motored, single-cylinder spark-ignition engine. The unsteady energy equation approach furnishes a significant improvement in the simulation of the heat flux data relative to results from a representative instantaneous heat transfer correlation. The heat flux simulated using the unsteady model with one particular turbulent Prandtl number model agreed with measured heat flux in the wide open and fully closed throttle cases, with an error in peak values of about 6% and 35%, respectively.

References

References
1.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
2.
Amsden
,
A.
,
1997
, “
KIVA-3V: A block-Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos National Laboratory, NM, Technical Report No. LA 13313-MS.
3.
Han
,
Z.
, and
Reitz
,
R.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
4.
Keum
,
S.
,
Park
,
H.
,
Babajimopoulos
,
A.
,
Assanis
,
D.
, and
Jung
,
D.
,
2011
, “
Modelling of Heat Transfer in Internal Combustion Engines With Variable Density Effect
,”
Int. J. Engine Res.
,
12
(
6
), pp.
513
526
.10.1177/1468087411410015
5.
Lawton
,
B.
,
1987
, “
Effect of Compression and Expansion on Instantaneous Heat Transfer in Reciprocating Internal Combustion Engine
,”
Proc. Inst. Mech. Eng.
,
201
(
A3
), pp.
175
186
.
6.
Nijeweme
,
D.
,
Kok
,
J.
,
Stone
,
C.
, and
Wyszynski
,
L.
,
2001
, “
Unsteady in-Cylinder Heat Transfer in a Spark Ignition Engine: Experiments and Modelling
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
215
(
D6
), pp.
747
760
.10.1243/0954407011528329
7.
Buttsworth
,
D. R.
,
Agrira
,
A.
,
Malpress
,
R.
, and
Yusaf
,
T.
,
2011
, “
Simulation of Instantaneous Heat Transfer in Spark Ignition Internal Combustion Engines—Unsteady Thermal Boundary Layer Modeling
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p. 022802.10.1115/1.4001080
8.
Agrira
,
A.
,
2012
, “
Internal Combustion Engine Heat Transfer—Transient Thermal Analysis
,” Ph.D. thesis, University of Southern Queensland, Toowoomba, Australia.
9.
Buttsworth
,
D. R.
,
2001
, “
Assessment of Effective Thermal Product of Surface Junction Thermocouples on Millisecond and Microsecond Time Scales
,”
Exp. Therm. Fluid Sci.
,
25
(
6
), pp.
409
420
.10.1016/S0894-1777(01)00093-0
10.
Hollis
,
B.
,
1995
, “
User's Manual for the One-Dimensional Hypersonic Aero-Thermodynamic (1DHEAT) Data Reduction Code
,” NASA CR, 4691.
11.
Buttsworth
,
D.
,
2002
, “
Spark Ignition Internal Combustion Engine Modelling Using Matlab
,” University of Southern Queensland, Toowoomba, Australia, Technical Report TR-2002-02.
12.
Ferguson
,
C.
,
1986
,
Internal Combustion Engines, Applied Thermosciences
,
Wiley
,
New York
.
13.
Park
,
H.
,
Assanis
,
D.
, and
Jung
,
D.
,
2009
, “
Development of an In-Cylinder Heat Transfer Model With Compressibility Effects on Turbulent Prandtl Number, Eddy Viscosity Ratio and Kinematic Viscosity Variation
,” SAE Technical Paper No. 01–0702.
14.
Yakhot
,
V.
,
Orszag
,
S.
, and
Yakhot
,
A.
,
1987
, “
Heat Transfer in Turbulent Fluids–I. Pipe Flow
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
15
22
.10.1016/0017-9310(87)90057-3
15.
Molla
,
M.
,
Salit
,
M.
,
Bin
,
M.
,
Megat Ahmed
,
F.
, and
Asrar
,
W.
,
2005
, “
Intake Valve Modelling and Study of the Suction Air Pressure and Volumetric Efficiency in a Four Stroke Internal Combustion Engine
,”
Suranaree J. Sci. Technol.
,
12
(
4
), pp. 276–285.
16.
Churchill
,
S.
,
2002
, “
A Reinterpretation of the Turbulent Prandtl Number
,”
Ind. Eng. Chem. Res.
,
41
(
25
), pp.
6393
6401
.10.1021/ie011021k
17.
Jischa
,
M.
, and
Rieke
,
H.
,
1979
, “
About the Prediction of Turbulent Prandtl and Schmidt Numbers From Modeled Transport Equations
,”
Int. J. Heat Mass Transfer
,
22
(
11
), pp.
1547
1555
.10.1016/0017-9310(79)90134-0
18.
Kays
,
W.
,
1994
, “
Turbulent Prandtl number. Where are we?
,”
ASME Trans. J. Heat Transfer
,
116
, pp.
284
295
.10.1115/1.2911398
19.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
20.
Myong
,
H.
,
Kasagi
,
N.
, and
Hirata
,
M.
,
1989
, “
Numerical Prediction of Turbulent Pipe Flow Heat Transfer for Various Prandtl Number Fluids With the Improved Ke Turbulence Model
,”
JSME Int. J.
,
32
, pp.
613
622
.
21.
Notter
,
R.
, and
Sleicher
,
C.
,
1972
, “
A Solution to the Turbulent Graetz Problem–III Fully Developed and Entry Region Heat Transfer Rates
,”
Chem. Eng. Sci.
,
27
(
11
), pp.
2073
2093
.10.1016/0009-2509(72)87065-9
22.
Graber
,
H.
,
1970
, “
Heat Transfer in Smooth Tubes, Between Parallel Plates, in Annuli and Tube Bundles With Exponential Heat Flux Distributions in Forced Laminar or Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
13
(
11
), pp.
1645
1703
.10.1016/0017-9310(70)90095-5
23.
Reynolds
,
A.
,
1975
, “
The Prediction of Turbulent Prandtl and Schmidt Numbers
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1055
1069
.10.1016/0017-9310(75)90223-9
24.
Wilcox
,
D.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW industries La Canada
,
CA
.
25.
Smits
,
J.
,
2006
, “
Modeling of a Fluid Flow in an Internal Combustion Engine
,” Graduation Report TU/e, Report No. WVT.
26.
Peng
,
S.
,
Davidson
,
L.
, and
Holmberg
,
S.
,
1997
, “
A Modified Low-Reynolds-Number k-ω Model for Recirculating Flows
,”
ASME J. Fluids Eng.
,
119
, pp.
867
–875.10.1115/1.2819510
27.
Bredberg
,
J.
,
2001
, “
On Two Equation Eddy-Viscosity Models
,” Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg, Sweden.
28.
Bredberg
,
J.
,
Peng
,
S.
, and
Davidson
,
L.
,
2002
, “
An Improved k-ω Turbulence Model Applied to Recirculating Flows
,”
Int. J. Heat Fluid Flow
,
23
(
6
), pp.
731
743
.10.1016/S0142-727X(02)00148-0
29.
Lumley
,
J.
,
1999
,
Engines: An Introduction
,
Cambridge University
, Cambridge, UK.
30.
Diwakar
,
R.
,
1984
, “
Assessment of the Ability of a Multidimensional Computer Code to Model Combustion in a Homogeneous-Charge Engine
,”
Society of Automotive Engineers, Inc.
, Warrendale, PA, Technical Report No. 840230.10.4271/840230.
31.
Rao
,
V.
, and
Bardon
,
M.
,
1985
, “
Convective Heat Transfer in Reciprocating Engines
,”
Proc. Inst. Mech. Eng.
,
199
(
D3
), pp.
221
226
.10.1243/PIME_PROC_1985_199_160_01
32.
Borman
,
G.
, and
Nishiwaki
,
K.
,
1987
, “
Internal Combustion Engine Heat Transfer
,”
Prog. Energy Combust. Sci.
,
133
, pp.
1
46
.10.1016/0360-1285(87)90005-0
You do not currently have access to this content.