In this study, the effect of randomness of blowing ratio on film cooling performance is investigated by combining direct numerical simulations with a stochastic collocation approach. The geometry includes a 35-deg inclined jet with a plenum attached to it. The blowing ratio variations are assumed to have a truncated Gaussian distribution with mean of 0.3 and the standard variation of approximately 0.1. The parametric space is discretized using multi-element general polynomial chaos (ME-gPC) with five elements where general polynomial chaos of order 3 is used in each element. Direct numerical simulations were carried out using spectral element method to sample the governing equations in space and time. The probability density function of the film cooling effectiveness was obtained and the standard deviation of the adiabatic film cooling effectiveness on the blade surface was calculated. A maximum of 20% of variation in film cooling effectiveness was observed at 2.2 jet-diameter distance downstream of the exit hole. The spatially-averaged adiabatic film cooling effectiveness was 0.23 ± 0.02. The calculation of all the statistical properties were carried out as off-line post processing. A fast convergence of the polynomial expansion in the random space is observed which shows that the computational strategy is very cost-effective.

References

1.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2001
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
London
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.10.1115/1.1371778
4.
Bidan
,
G.
,
Vezier
,
C.
, and
Nikitopoulos
,
D. E.
,
2013
, “
Study of Unforced and Modulated Film-Cooling Jets Using Proper Orthogonal Decomposition—Part I: Unforced Jets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021037
.10.1115/1.4006599
5.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor–Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
118
(
1
), pp.
123
133
.10.1115/1.2836593
6.
Womack
,
K. M.
,
Volino
,
R. J.
, and
Schultz
,
M. P.
,
2008
, “
Combined Effects of Wakes and Jet Pulsing on Film Cooling
,”
ASME J. Turbomach.
,
130
(
4
), p.
041010
.10.1115/1.2812335
7.
Xiu
,
D.
,
2009
, “
Fast Numerical Methods for Stochastic Computations: A Review
,”
Comm. Comp. Phys.
,
5
(
2–4
), pp.
242
272
.
8.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
9.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
10.
Venturi
,
D.
,
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2008
, “
Stochastic Low-Dimensional Modelling of a Random Laminar Wake Past a Circular Cylinder
,”
J. Fluid Mech.
,
606
, pp.
339
367
.10.1017/S0022112008001821
11.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.10.1016/j.jcp.2005.03.023
12.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2006
, “
Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
,”
SIAM J. Sci. Comput. (USA)
,
28
(
3
), pp.
901
928
.10.1137/050627630
13.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2006
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. N. Y Acad. Sci.
,
934
(
1
), pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
14.
Acharya
,
S.
, and
Tyagi
,
M.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME Conference Proceedings
,
2003
(
36886
), pp.
517
526
.
15.
Peet
,
Y.
, and
Lele
,
S. K.
,
2008
, “
Near Field of Film Cooling Jet Issued Into a Flat Plate Boundary Layer: LES Study
,
ASME Conference Proceedings
,
2008
(
43147
), pp.
409
418
.
16.
Iourokina
,
I. V.
, and
Lele
,
S. K.
,
2005
, “
Towards Large Eddy Simulation of Film-Cooling Flows on a Model Turbine Blade Leading Edge
,” AIAA Paper No. 670.
17.
Guo
,
X.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2006
, “
Large-Eddy Simulations of Film Cooling Flows
,”
Comput. Fluids
,
35
(
6
), pp.
587
606
.10.1016/j.compfluid.2005.02.007
18.
Renze
,
P.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
18
34
.10.1016/j.ijheatfluidflow.2007.07.010
19.
Babaee
,
H.
,
Acharya
,
S.
, and
Wan
,
X.
,
2013
, “
Optimization of Forcing Parameters of Film Cooling Effectiveness
,”
ASME Conference Proceedings, ASME
.
20.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3118
3127
.10.1016/j.ijheatmasstransfer.2009.01.030
21.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
J. Fluids Eng.
,
123
(
2
), pp.
359
371
.10.1115/1.1369598
22.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Comm. Comp. Phys.
,
2
(
2
), pp.
293
309
.
23.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University
,
Princeton, NJ
.
24.
Warburton
,
T.
,
1998
, “
Spectral/hp Element Methods on Polymorphic Domains
,” Ph.D. thesis, Brown University, Providence, RI.
25.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
2005
,
Spectral/hp Element Methods for Computational Fluid Dynamics
,
Oxford University
,
New York
.
You do not currently have access to this content.