Future manned space missions are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to predict the average condensation heat transfer coefficient with varying degrees of success, and a recent correlation is identified for its superior predictive capability, evidenced by a mean absolute error of 21.7%.

References

References
1.
Ganapathi
,
G. B.
,
Birur
,
G.
,
Sunada
E.
, and
Miller
,
J.
,
2008
, “
Two Phase vs. Single Phase Thermal Loop Trades for Exploration Mission LAT II Architecture
,” SAE Paper 2008-01-1958.
2.
Ganapathi
,
G. B.
,
Birur
,
G.
,
Tsuyuki
G.
, and
Krylo
,
R.
,
2004
, “
Mars Exploration Rover Heat Rejection System Performance—Comparison of Ground and Flight Data
,” SAE Paper 2004-01-2413.
3.
Chiaramonte
,
F. P.
, and
Joshi
,
J. A.
,
2004
, “
Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology—Final Report
,” NASA Report TM-2004-212940, Washington, D.C.
4.
National Research Council
,
2011
,
Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era
,
The National Academies Press
,
Washington, D.C
.
5.
Anderson
,
T. M.
, and
Mudawar
,
I.
,
1989
, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
,
111
, pp.
752
759
.10.1115/1.3250747
6.
Willingham
,
T. C.
, and
Mudawar
,
I.
,
1992
, “
Forced-Convection Boiling and Critical Heat Flux from a Linear Array of Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
35
, pp.
2879
2890
.10.1016/0017-9310(92)90308-F
7.
Monde
,
M.
, and
Inoue
,
T.
,
1991
, “
Critical Heat Flux in Saturated Forced Convective Boiling on a Heated Disk with Multiple Impinging Jets
,”
ASME J. Heat Transfer
,
113
, pp.
722
727
.10.1115/1.2910623
8.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1992
, “
Enhancement of Single-Phase Heat Transfer and Critical Heat Flux from an Ultra-High-Flux-Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
ASME J. Heat Transfer
,
114
, pp.
764
768
.10.1115/1.2911348
9.
Johns
,
M. E.
, and
Mudawar
,
I.
,
1996
, “
An Ultra-High Power Two-Phase Jet-Impingement Avionic Clamshell Module
,”
ASME J. Electron. Packag.
118
, pp.
264
270
.10.1115/1.2792162
10.
Lin
,
L.
, and
Ponnappan
,
R.
,
2003
, “
Heat Transfer Characteristics of Spray cooling in a Closed Loop
,”
Int. J. Heat Mass Transfer
46
, pp.
3737
3746
.10.1016/S0017-9310(03)00217-5
11.
Rybicki
,
J. R.
, and
Mudawar
,
I.
,
2006
, “
Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays
,”
Int. J. Heat Mass Transfer
,
49
, pp.
5
16
.10.1016/j.ijheatmasstransfer.2005.07.040
12.
Webb
,
R. L.
,
1981
, “
The Evolution of Enhanced Surface Geometries for Nucleate Boiling
,”
Heat Transfer Eng.
,
2
, pp.
46
69
.10.1080/01457638108962760
13.
Khanikar
,
V.
,
Mudawar
,
I.
, and
Fisher
,
T.
,
2009
, “
Effects of Carbon Nanotube Coating on Flow Boiling in a Micro-Channel
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3805
3817
.10.1016/j.ijheatmasstransfer.2009.02.007
14.
Yan
,
Y. Y.
, and
Lin
,
T. F.
,
1999
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe
,”
Int. J. Heat Mass Transfer
,
42
, pp.
697
708
.10.1016/S0017-9310(98)00195-1
15.
Baird
,
J. R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2003
, “
Local Condensation Heat Transfer Rates in Fine Passages
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4453
4466
.10.1016/S0017-9310(03)00287-4
16.
Kim
,
N. H.
,
Cho
,
J. P.
,
Kim
,
J. O.
, and
Youn
,
B.
,
2003
, “
Condensation Heat Transfer of R-22 and R-410A in Flat Aluminum Multi-Channel Tubes with or without Micro-Fins
,”
Int. J. Refrigeration
,
26
, pp.
830
839
.10.1016/S0140-7007(03)00049-5
17.
Kim
,
S. M.
,
Kim
,
J.
, and
Mudawar
,
I.
,
2012
, “
Flow Condensation in Parallel Micro-Channels—Part 1: Experimental Results and Assessment of Pressure Drop Correlations
,”
Int. J. Heat Mass Transfer
,
55
, pp.
971
983
.10.1016/j.ijheatmasstransfer.2011.10.013
18.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Flow Condensation in Parallel Micro-Channels—Part 2: Heat Transfer Results and Correlation Technique
,”
Int. J. Heat Mass Transfer
,
55
, pp.
984
994
.10.1016/j.ijheatmasstransfer.2011.10.012
19.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
, pp.
3246
3261
.10.1016/j.ijheatmasstransfer.2012.02.047
20.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
56
, pp.
238
250
.10.1016/j.ijheatmasstransfer.2012.09.032
21.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Theoretical Model for Annular Flow Condensation in Rectangular Micro-Channels
,”
Int. J. Heat Mass Transfer
,
55
, pp.
958
970
.10.1016/j.ijheatmasstransfer.2011.10.014
22.
Park
, I
.
,
Kim
,
S. M.
, and
Mudawar
,
I.
,
2013
, “
Experimental Measurement and Modeling of Downflow Condensation in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
57
, pp.
567
581
.10.1016/j.ijheatmasstransfer.2012.10.060
23.
Akers
,
W. W.
,
Deans
,
H. A.
, and
Crosser
,
O. K.
,
1958
, “
Condensing Heat Transfer Within Horizontal Tubes
,”
Chem. Eng. Prog.
,
54
, pp.
89
90
.
24.
Cavallini
,
A.
, and
Zecchin
,
R.
,
1974
, “
A Dimensionless Correlation for Heat Transfer in Forced Convection Condensation
,”
Proceedings of the Fifth Int. Heat Transfer Conference
, Vol. 3, pp.
309
313
, Tokyo, Japan.
25.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer during Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
, pp.
547
556
.10.1016/0017-9310(79)90058-9
26.
Dobson
,
M.
, and
Chato
,
J.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
,
120
, pp.
193
213
.10.1115/1.2830043
27.
Wang
,
W. W.
,
Radcliff
,
T.
, and
Christensen
,
R. N.
,
2002
, “
A Condensation Heat Transfer Correlation for Millimeter-Scale Tubing With Flow Regime Transition
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
473
485
.10.1016/S0894-1777(02)00162-0
28.
Koyama
,
S.
,
Kuwahara
,
K.
,
Nakashita
,
K.
, and
Yamamoto
,
K.
,
2003
, “
An Experimental study on Condensation of Refrigerant R134a in a Multi-Port Extruded Tube
,”
Int. J. Refrigeration
,
24
, pp.
425
432
.10.1016/S0140-7007(02)00155-X
29.
Mudawar
,
I.
, and
Houpt
,
R. A.
,
1993
, “
Measurement of Mass and Momentum Transport in Wavy-Laminar Falling Liquid Films
,”
Int. J. Heat Mass Transfer
,
36
, pp.
4151
4162
.10.1016/0017-9310(93)90077-J
30.
Shmerler
,
J. A.
, and
Mudawar
,
I.
,
1988
, “
Local Heat Transfer Coefficient in Wavy Free-Falling Turbulent Liquid Films Undergoing Uniform Sensible Heating
,”
Int. J. Heat Mass Transfer
,
31
, pp.
67
77
.10.1016/0017-9310(88)90223-2
31.
Lyu
,
T. H.
, and
Mudawar
,
I.
,
1991
, “
Statistical Investigation of the Relationship between Interfacial Waviness and Sensible Heat Transfer to a Falling Liquid Film
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1451
1464
.10.1016/0017-9310(91)90288-P
32.
Lyu
,
T. H.
, and
Mudawar
,
I.
,
1991
, “
Determination of Wave-Induced Fluctuations of Wall Temperature and Convective Heat Transfer Coefficient in the Heating of a Turbulent Falling Liquid Film
,”
Int. J. Heat Mass Transfer
,
34
, pp.
2521
2534
.10.1016/0017-9310(91)90093-T
33.
Shmerler
,
J. A.
, and
Mudawar
,
I.
,
1988
, “
Local Evaporative Heat Transfer Coefficient in Turbulent Free-Falling Liquid Films
,”
Int. J. Heat Mass Transfer
,
31
, pp.
731
742
.10.1016/0017-9310(88)90131-7
34.
Mudawar
,
I.
, and
Houpt
,
R. A.
,
1993
, “
Mass and Momentum Transport in Falling Liquid Films Laminarized at Relatively High Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
36
, pp.
3437
3448
.10.1016/0017-9310(93)90162-Y
35.
Derby
,
M.
,
Lee
,
H.
,
Peles
,
Y.
, and
Jensen
,
M.
,
2012
, “
Condensation Heat Transfer in Square, Triangular, and Semi-Circular Mini-Channels
,”
Int. J. Heat Mass Transfer
,
55
, pp.
187
197
.10.1016/j.ijheatmasstransfer.2011.09.002
36.
Fang
,
C.
,
David
,
M.
,
Wang
,
F.
, and
Goodson
,
K. E.
,
2010
, “
Influence of Film Thickness and Cross-Sectional Geometry on Hydrophilic Microchannel Condensation
,”
Int. J. Multiphase Flow
,
36
, pp.
608
619
.10.1016/j.ijmultiphaseflow.2010.04.005
You do not currently have access to this content.