Laboratory tests were performed to measure cooling rates of an impinging oil-jet on the underside of an automotive piston as functions of oil nozzle-to-piston surface spacing, oil pressure, oil temperature, and piston temperature. Based on these results, area-average Nusselt number correlations were derived for a Reynolds number range of 100–4500, a Prandtl number range of 90–750, and a nozzle-to-piston surface spacing range over 73–160 mm, which are within the ranges expected for oil-jet cooling of automotive pistons.

References

1.
Seale
,
W. J.
, and
Taylor
,
D. H. C.
,
1971
, “
Spatial Variation of Heat Transfer to Pistons and Liners of Some Medium Speed Diesel Engines
,”
Proc. Inst. Mech. Eng.
,
185
(
1970
), pp.
203
218
.10.1243/PIME_PROC_1970_185_030_02
2.
Rakopoulos
,
C. D.
,
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
, and
Giakoumis
,
E. G.
,
1997
, “
An Integrated Transient Analysis Simulation Model Applied in Thermal Loading Calculations of an Air-Cooled Diesel Engine Under Variable Speed and Load Conditions
,” SAE Paper No. 97-0634.
3.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
4.
Stevens
,
J.
, and
Webb
,
B. W.
,
1991
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
71
78
.10.1115/1.2910554
5.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Liquid Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
571
582
.10.1115/1.2910604
6.
Tawfek
,
A. A.
,
1996
, “
Heat Transfer and Pressure Distributions of an Impinging Jet on a Flat Surface
,”
Heat Mass Transfer
,
32
, pp.
49
54
.10.1007/s002310050090
7.
Hofmann
,
H. M.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Measurements on Steady State Heat Transfer and Flow Structure and New Correlations for Heat and Mass Transfer in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3957
3965
.10.1016/j.ijheatmasstransfer.2007.01.023
8.
Pimenta
,
M. M.
, and
Filho
,
R.
,
1993
, “
Cooling of Automotive Pistons: Study of Liquid-Cooling Jets
,” SAE Paper No. 93-1622.
9.
Varghese
,
M. B.
,
Goyal
,
S. K.
, and
Agarwal
,
A. K.
,
2005
, “
Numerical and Experimental Investigation of Oil Jet Cooled Piston
,” SAE Paper No. 2005-012-1382.
10.
Agarwal
,
A. K.
, and
Varghese
,
M. B.
,
2006
Numerical Investigations of Piston Cooling Using Oil Jet in Heavy Duty Diesel Engines
,”
Int. J. Engine Res.
,
7
, pp.
411
421
.10.1243/14680874JER01804
11.
Izadi
,
M.
,
Hoseini
,
S. V.
,
Alaviyoun
,
S. S.
, and
Mirsalim
,
S. M. A.
,
2010
, “
Experimental and Numerical Analysis of the Piston Cooling Jet's Performance
,”
Proceedings of the ASME 10th Bennial Conference on Engineering Systems Design and Analysis
,
Istanbul, Turkey
, July 12–14, pp.
287
293
, Paper No. ESDA2010-25145.
12.
Moharty
,
A. K.
, and
Tawfek
,
A. A.
,
1993
, “
Heat Transfer Due to a Round Jet Impinging Normal to a Flat Surface
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1639
1647
.10.1016/S0017-9310(05)80073-0
13.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.