The turbulent heat transfer by a confined jet flowing inside a hot cylindrical cavity is investigated numerically in this paper. This configuration is found in several engineering applications such as air conditioning and the ventilation of mines, deadlock, or corridors. The parameters investigated in this work are the Reynolds number (Re, 20,000 ≤ Re ≤ 50,000) and the normalized distance Lf between jet exit and the cavity bottom (Lf, 2 ≤ Lf  ≤ 12). The numerical predictions are performed by finite volume method using the second order one-point closure turbulence model (RSM). The Nusselt number increases and attains maximum values at stagnation points, after it decreases. For an experimental test case available in the literature Lf = 8, the numerical predictions are in good agreement. Processes of heat transfer are analyzed from the flow behavior and the underlying mechanisms. The maximum local heat transfer between the cavity walls and the flow occurs at Lf = 6 corresponding to the length of the potential core. Nusselt number at the stagnation point is correlated versus Reynolds number Re and impinging distance Lf; [Nu0=f(Re,Lf)].

References

1.
Gaunter
,
J. W.
,
Livingood
,
J. N. B.
, and
Hrycak
,
P.
,
1970
, “
Survey of Literature on Flow Characteristic of a Single Turbulent Jet Impinging on a Flat Plate
,” NASA Technical Note D-5652.
2.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two Equations Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
3.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical of Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
4.
Cooper
,
D.
,
Jackson
,
D. C.
,
Launder
,
B. E.
, and
Liao
,
G. X.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment: Flow-Field Experiments
,”
Int. J. Heat Mass Transfer
,
36
(10), pp.
2675
2684
.10.1016/S0017-9310(05)80204-2
5.
Amano
,
R. S.
, and
Brandt
,
H.
,
1984
, “
Numerical Study of Turbulent Axisymmetric Jets Impinging on a Plate and Flowing Into an Axisymmetric Cavity
,”
ASME J. Fluid Eng.
,
106
(
4
), pp.
410
417
.10.1115/1.3243139
6.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(10), pp.
1261
1272
.10.1016/0017-9310(65)90054-2
7.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1966
, “
Heat Transfer Characteristics of Impinging Two Dimensional Air Jets
,”
ASME J. Heat Transfer
,
88
(
1
), pp.
101
108
.10.1115/1.3691449
8.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C. W.
,
1969
, “
Impingement Cooling of Concave Surfaces With Lines Circular Air Jets
,”
ASME J. Eng. Gas Turbines Power
,
91
(
3
), pp.
149
155
.10.1115/1.3574713
9.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
J. Aircraft
,
6
(
3
), pp.
203
208
.10.2514/3.44036
10.
Livingood
,
J. N. B.
, and
Hrycak
,
P.
,
1973
, “
Impingement Heat Transfer From Turbulent Air Jets to Flat Plate—A Literature Survey
,” NASA Technical Note X-2778.
11.
Kang
,
H.
, and
Tao
,
W.
,
1989
, “
Heat and Mass Transfer for Jet Impingement in a Cylindrical Cavity With One End Open to the Ambient Air
,”
AIAA
Paper No. 89-0173. 10.2514/6.1989-173
12.
Lee
,
C. H.
,
Lim
,
K. B.
,
Lee
,
S. H.
,
Yoon
,
Y. J.
, and
Sung
,
N. W.
,
2007
, “
A Study of the Heat Transfer Characteristics of Turbulent Round Jet Impinging on an Inclined Concave Surface Using Liquid Crystal Transient Method
,”
Exp. Therm. Fluid Sci.
,
31
(6), pp.
559
565
.10.1016/j.expthermflusci.2006.06.004
13.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
,
Mshvidobadze
,
Yu. M.
, and
Sharov
,
K. A.
,
2009
, “
Impingement of an Impact Jet Onto a Spherical Cavity. Flow Structure and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(11–12), pp.
2498
2506
.10.1016/j.ijheatmasstransfer.2009.01.018
14.
Voropayev
,
S. I.
,
Sanchez
,
X.
,
Nath
,
C.
,
Webb
,
S.
, and
Fernando
,
H. J. S.
,
2011
, “
Evolution of a Confined Turbulent Jet in a Long Cylindrical Cavity: Homogeneous Fluids
,”
Phys. Fluids
,
23
(11), p.
115106
.10.1063/1.3662442
15.
Benhadid
,
S.
,
1981
, “
Contribution à l’étude d'un écoulement gazeux à symétrie axiale dans une cavité cylindrique
,” Thèse de Docteur 3ème cycle, Mécanique des Fluides, USTHB Alger, Algeria.
16.
Bouhenna
,
A.
,
1982
, “
Contribution à l’étude d'un écoulement de fluide réel à symétrie axiale dans une cavité cylindrique
,” Thèse de Magister, Mécanique des Fluides, USTHB, Alger, Algeria.
17.
Benaissa
,
A.
,
1985
Contribution à l’étude de l’évolution d'un jet d'air à symétrie axiale dans une cavité cylindrique
,” Thèse de Magister, Mécanique des Fluides, USTHB, Alger, Algeria.
18.
Kendil
,
F. Z.
,
Mataoui
,
A.
, and
Benaissa
,
A.
,
2009
, “
Flow Structures of a Round Jet Evolving Into a Cylindrical Cavity
,”
Int. J. Transp. Phenom.
,
11
(
2
), pp.
165
183
.
19.
Shakouchi
,
T.
,
Suematsu
,
Y.
, and
Ito
,
T.
,
1982
, “
A Study on Oscillatory Jet in a Cavity
,”
Bull. JSME
,
25
(
206
), pp.
1258
1265
.10.1299/jsme1958.25.1258
20.
Mataoui
,
A.
,
Schiestel
,
R.
, and
Salem
,
A.
,
2001
, “
Flow Regimes of Interaction of a Turbulent Plane Jet Into a Rectangular Cavity: Experimental Approach and Numerical Modeling
,”
J. Flow, Turbul. Combus.
,
67
(
4
), pp.
267
304
.10.1023/A:1015255211723
21.
Mataoui
,
A.
, and
Schiestel
,
R.
,
2009
, “
Unsteady Phenomena of an Oscillating Turbulent Jet Flow Inside a Cavity: Effect of Aspect Ratio
,”
J. Fluids Struct.
,
25
(1), pp.
60
79
.10.1016/j.jfluidstructs.2008.03.010
22.
Gilard
,
V.
, and
Brizzi
,
L. E.
,
2002
, “
Velocity Field on the Vicinity of a Slot Jet Impinging a Curved Wall
,”
Proceedings of International Symposium of Laser Measurements Techniques
, Laboratoire des Etudes Aéodynamique.
23.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Developments of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(3), pp.
537
566
.10.1017/S0022112075001814
24.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(3), pp.
491
511
.10.1017/S0022112078001251
25.
Fu
,
S.
,
Launder
,
B. E.
, and
Leschziner
,
M. A.
,
1987
, “
Modeling Strongly Swirling Recirculating Jet Flow With Reynolds-Stress Transport Closures
,”
6th Symposium on Turbulent Shear Flows
, Toulouse, France.
26.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure: Present… and Future?
,”
Int. J. Heat Fluid Flow
,
10
(4), pp.
282
300
.10.1016/0142-727X(89)90017-9
27.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows
,”
Int. J. Numer. Methods Fluids
,
9
(8), pp.
963
985
.10.1002/fld.1650090806
28.
Patankar
,
S. V.
,
1980
, “
Numerical Heat Transfer and Fluid Flow
,”
Series in Computational Methods in Mechanics and Thermal Sciences
,
Hemisphere Publ. Corp.
,
Arlington, VA
.
29.
Tani
,
I.
, and
Komatsu
,
Y.
,
1966
, “
Impingement of a Round Jet on a Flat Surface
,”
The International Congress of Applied Mechanics
, Springer, Berlin, pp.
672
676
.
30.
Quan
,
L.
,
2006
, “
Study of Heat Transfer Characteristics of Impinging Air Jet Using Pressure and Temperature Sensitive Luminescent Paint
,” Ph.D. thesis, University of Central Florida, Orlando, FL.
31.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer—Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(17), pp.
3291
3301
.10.1016/j.ijheatmasstransfer.2007.01.044
You do not currently have access to this content.