This paper numerically and experimentally investigated the effect of weak crossflow on the heat transfer characteristics of a short-distance impinging jet. The Reynolds number of the impinging jet ranged from 6000 to 15,000, and the mass velocity ratio (M) between the crossflow and the jet varied from 0 to 0.15. The separation distance (H) between the exit of the jet nozzle and the impingement surface equals to the exit diameter (D) of the impinging jet. In the experiments, the temperature distribution on the impingement target surface was measured using a transient liquid crystal method. In the numerical simulation, a multiblock hexahedral mesh was applied to discrete the computational domain, and a commercial CFD package (Ansys cfx-12.0) with a standard k-ɛ turbulence model was used for computation. It was found that compared to the impinging cooling without crossflow, the heat transfer characteristics near the impinging stagnation point remained almost constant. At the same time, the presence of crossflow decreased the heat transfer rate in the upstream region of the impinging stagnation point, while increased that in the downstream of the impinging stagnation point. Taken together, crossflow has a complex influence on the impinging cooling, which is highly dependent on the mass velocity ratio between the crossflow and the jet.

References

1.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
2.
Taslim
,
M. E.
, and
Pan
,
Y.
,
2001
, “
An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
766
773
.10.1115/1.1401035
3.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2006
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
(
2
), pp.
310
320
.10.1115/1.2137742
4.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
5.
Salewski
,
M.
, and
Stankovic
,
D.
,
2008
, “
Mixing in Circular and Non-Circular Jets in Crossflow
,”
Flow Turbulence Combust.
,
80
(
2
), pp.
255
283
.10.1007/s10494-007-9119-x
6.
Metzger
,
D.
, and
Korstad
,
R.
,
1972
, “
Effects of Crossflow on Impingement Heat Transfer
,”
J. Eng. Power
,
94
(
1
), pp.
35
41
.10.1115/1.3445616
7.
Florschuetz
,
L.
, and
Metzger
,
D.
,
1984
, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
34
41
.10.1115/1.3246656
8.
Sparrow
,
E.
, and
Goldstein
,
R.
,
1975
, “
Effect of Nozzle—Surface Separation Distance on Impingement Heat Transfer for a Jet in a Crossflow
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
528
533
.10.1115/1.3450423
9.
Wang
,
L.
, and
Sundén
,
B.
,
2011
, “
Heat Transfer Characteristics of an Impinging Jet in Crossflow
,”
ASME J. Heat Transfer
,
133
(12), p.
122202
.10.1115/1.4004527
10.
Goldstein
,
R.
, and
Behbahani
,
A.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
12
), pp.
1377
1382
.10.1016/0017-9310(82)90131-4
11.
Chambers
,
A. C.
,
Gillespie
,
D. R.
, and
Ireland
,
P. T.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.10.1115/1.1800493
12.
Metzger
,
D.
, and
Florschuetz
,
L.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
.10.1115/1.3451022
13.
Bouchez
,
J. P.
, and
Goldstein
,
R.
,
1975
, “
Impingement Cooling From a Circular Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
719
730
.10.1016/0017-9310(75)90201-X
14.
Abdon
,
A.
, and
Sundén
,
B.
,
2001
, “
Impingement and Convection Heat Transfer
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
417
423
.10.1111/j.1749-6632.2001.tb05878.x
15.
Zecchi
,
S.
, and
Bacci
,
A.
,
2004
, “
Numerical Analysis of Crossflow and Single Jet Impinging on a Heated Surface With Shaped Groove
,” Proceedings of
ASME
Turbo Expo
2004: Power for Land, Sea, and Air
,
Vienna, Austria
, June 14–17, pp.
503
512
.10.1115/GT2004-53549
16.
Spring
,
S.
, and
Weigand
,
B.
,
2006
, “
CFD Heat Transfer Predictions of a Single Circular Jet Impinging With Crossflow
,”
Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
AIAA
Paper No. 2006-3589. 10.2514/6.2006-3589
17.
Popovac
,
M.
, and
Hanjalic
,
K.
,
2007
, “
Large-Eddy Simulations of Flow Over a Jet-Impinged Wall-Mounted Cube in a Cross Stream
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1360
1378
.10.1016/j.ijheatfluidflow.2007.05.009
18.
Rundström
,
D.
, and
Moshfegh
,
B.
,
2009
, “
Large-Eddy Simulation of an Impinging Jet in a Cross-Flow on a Heated Wall-Mounted Cube
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
921
931
.10.1016/j.ijheatmasstransfer.2008.03.035
19.
Sezai
,
I.
, and
Aldabbagh
,
L.
,
2004
, “
Three-Dimensional Numerical Investigation of Flow and Heat Transfer Characteristics of Inline Jet Arrays
,”
Numer. Heat Transfer, Part A
,
45
(
3
), pp.
271
288
.10.1080/10407780490278571
20.
Allauddin
,
U.
, and
Uddin
,
N.
,
2013
, “
Heat Transfer Enhancement by Jet Impingement on a Flat Surface With Detached-Ribs Under Cross-Flow Conditions
,”
Numer. Heat Transfer, Part A
,
63
(
12
), pp.
921
940
.10.1080/10407782.2013.757155
21.
Catalano
,
G. D.
,
Chang
,
K.
, and
Mathis
,
J.
,
1989
, “
Investigation of Turbulent Jet Impingement in a Confined Crossflow
,”
AIAA J.
,
27
(
11
), pp.
1530
1535
.10.2514/3.10298
22.
Funazaki
,
K.
, and
Tarukawa
,
Y.
,
2001
, “
Heat Transfer Characteristics of an Integrated Cooling Configuration of Ultra-High Temperature Turbine Blades: Experimental and Numerical Investigations
,” ASME Turbo Expo 2001: Power for Land, Sea, and Air, New Orleans, LA, June 4–7,
ASME
Paper No. 2001-GT-0148. 10.1115/2001-GT-0148
23.
Funazaki
,
K.
, and
Hachiya
,
K.
,
2003
, “
Systematic Numerical Studies on Heat Transfer and Aerodynamic Characteristics of Impingement Cooling Devices Combined With Pins
,” ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, Atlanta, GA, June 16–19,
ASME
Paper No. GT2003-38256. 10.1115/GT2003-38256
24.
Baydar
,
E.
, and
Ozmen
,
Y.
,
2005
, “
An Experimental and Numerical Investigation on a Confined Impinging Air Jet at High Reynolds Numbers
,”
Appl. Therm. Eng.
,
25
(
2
), pp.
409
421
.10.1016/j.applthermaleng.2004.05.016
25.
Qi
,
M.
,
Chen
,
Z.
, and
Fu
,
R.
,
2001
, “
Flow Structure of the Plane Turbulent Impinging Jet in Cross Flow
,”
J. Hydraul. Res.
,
39
(
2
), pp.
155
161
.10.1080/00221680109499816
26.
Shevchuk
,
I. V.
,
Schnieder
,
M.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051701
.10.1115/1.4003080
27.
Xu
,
G. Q.
,
Zhu
,
J. Q.
, and
Tao
,
Z.
,
2010
, “
Application of the TLVA Model for Predicting Film Cooling Under Rotating Frames
,”
Int. J. Heat Mass Transfer
,
53
(
15
), pp.
3013
3022
.10.1016/j.ijheatmasstransfer.2010.03.029
28.
Zhang
,
L.
,
2010
, “
Numerical Simulation of Flow Around Circular Cylinder With Small Reynolds Numbers
,”
Chin. Q. Mech.
,
31
(4), pp.
543
547
.
29.
Li
,
X.
, and
Zhou
,
J.
,
2009
, “
On Selection of Reference Temperature of Heat Transfer Coefficient for Complicated Flows
,”
Heat Mass Transfer
,
45
(
5
), pp.
633
643
.10.1007/s00231-008-0461-x
You do not currently have access to this content.