Numerical simulations of Al2O3/water nanofluid in turbulent pipe flow are performed with considering the particle convection, diffusion, coagulation, and breakage. The distributions of particle volume concentration, the friction factor, and heat transfer characteristics are obtained. The results show that the initial uniform distributions of particle volume concentration become nonuniform, and increase from the pipe wall to the center. The nonuniformity becomes significant along the flow direction from the entrance and attains a steady state gradually. Friction factors increase with the increase of particle volume concentrations and particle diameter, and with the decrease of Reynolds number. The friction factors increase remarkably at lower volume concentration, while slightly at higher volume concentration. The presence of nanoparticles provides higher heat transfer than pure water. The Nusselt number of nanofluids increases with increasing Reynolds number, particle volume concentration, and particle diameter. The rate increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. For a fixed particle volume concentration, the friction factor is smaller while the Nusselt number is larger for the case with uniform distribution of particle volume concentration than that with nonuniform distribution. In order to effectively enhance the heat transfer using nanofluid and simultaneously save energy, it is necessary to make the particle distribution more uniform. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle diameter and Reynolds number are derived based on the numerical data.

References

1.
Jwo
,
C. S.
,
Teng
,
T. P.
,
Wu
,
D. J.
,
Chang
,
H.
, and
Chen
,
S. L.
,
2009
, “
Research on Pressure Loss of Alumina Nanofluid Flow in a Pipe
,”
J. Chin. Soc. Mech. Eng.
,
30
(
6
), pp.
511
517
.
2.
Hao
,
P.
,
Ding
,
G. L.
, and
Jiang
,
W. T.
,
2009
, “
Measurement and Correlation of Frictional Pressure Drop of Refrigerant-Based Nanofluid Flow Boiling Inside a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
32
(
7
), pp.
1756
1764
.10.1016/j.ijrefrig.2009.06.005
3.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
243
247
.10.1016/j.ijthermalsci.2009.07.015
4.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2010
, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
334
344
.10.1016/j.ijheatmasstransfer.2009.09.024
5.
Heyhat
,
M. M.
, and
Kowsary
,
F.
,
2010
, “
Effect of Particle Migration on Flow and Convective Heat Transfer of Nanofluids Flowing Through a Circular Pipe
,”
ASME J. Heat Transfer
,
132
(
6
), p.
062401
.10.1115/1.4000743
6.
Torii
,
S.
,
Satou
,
Y.
, and
Koito
,
Y.
,
2010
, “
Experimental Study on Convective Thermal-Fluid Flow Transport Phenomena in Circular Tube Using Nanofluids
,”
Int. J. Green Energy
,
7
(
3
), pp.
289
299
.10.1080/15435071003796061
7.
Sajadi
,
A. R.
, and
Kazemi
,
M. H.
,
2011
, “
Investigation of Turbulent Convective Heat Transfer and Pressure Drop of TiO2/Water Nanofluid in Circular Tube
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1474
1478
.10.1016/j.icheatmasstransfer.2011.07.007
8.
Teng
,
T. P.
,
Hung
,
Y. H.
,
Jwo
,
C. S.
,
Chen
,
C. C.
, and
Jeng
,
L. Y.
,
2011
, “
Pressure Drop of TiO2 Nanofluid in Circular Pipes
,”
Particuology
,
9
(
5
), pp.
486
491
.10.1016/j.partic.2011.05.001
9.
Zamzamian
,
A.
,
Oskouie
,
S. N.
,
Doosthoseini
,
A.
,
Joneidi
,
A.
, and
Pazouki
,
M.
,
2011
, “
Experimental Investigation of Forced Convective Heat Transfer Coefficient in Nanofluids of Al2O3/EG and CuO/EG in a Double Pipe and Plate Heat Exchangers under Turbulent Flow
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
495
502
.10.1016/j.expthermflusci.2010.11.013
10.
Li
,
D. D.
,
Zhao
,
W. L.
,
Liu
,
Z. M.
, and
Zhu
,
B. J.
,
2011
, “
Experimental Investigation of Heat Transfer Enhancement of the Heat Pipe Using CuO–Water Nanofluid
,”
Adv. Mater. Res.
,
160–162
, pp.
507
512
.10.4028/www.scientific.net/AMR.413.507
11.
Julia
,
J. E.
,
Hernandez
,
L.
,
Martinez-Cuenca
,
R.
,
Hibiki
,
T.
,
Mondragón
,
R.
,
Segarra
,
C.
, and
Jarque
,
J. C.
,
2012
, “
Measurement and Modelling of Forced Convective Heat Transfer Coefficient and Pressure Drop of Al2O3– and SiO2–Water Nanofluids
,”
J. Phys. Conf. Ser.
,
395
, p.
012038
.10.1088/1742-6596/395/1/012038
12.
Oztekin
,
A.
,
Neti
,
S.
, and
Ukaew
,
A.
,
2012
, “
Effects of Nanoparticles and Polymer Additives in Turbulent Pipe Flow
,”
ASME
Paper No. IMECE2010-40987. 10.1115/IMECE2010-40987
13.
Keshavarz Moraveji
,
M.
, and
Razvarz
,
S.
,
2012
, “
Experimental Investigation of Aluminum Oxide Nanofluid on Heat Pipe Thermal Performance
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1444
1448
.10.1016/j.icheatmasstransfer.2012.07.024
14.
Corcione
,
M.
,
Cianfrini
,
M.
, and
Quintino
,
A.
,
2012
, “
Heat Transfer of Nanofluids in Turbulent Pipe Flow
,”
Int. J. Therm. Sci.
,
56
, pp.
58
69
.10.1016/j.ijthermalsci.2012.01.009
15.
Kayhani
,
M. H.
,
Soltanzadeh
,
H.
,
Heyhat
,
M. M.
,
Nazari
,
M.
, and
Kowsary
,
F.
,
2012
, “
Experimental Study of Convective Heat Transfer and Pressure Drop of TiO2/Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
39
(
3
), pp.
456
462
.10.1016/j.icheatmasstransfer.2012.01.004
16.
Farinas Alvarino
,
P.
,
Saiz Jabardo
,
J. M.
,
Arce
,
A.
, and
Lamas Galdo
,
M. I.
,
2012
, “
Heat Transfer Enhancement in Nanofluids. A Numerical Approach
,”
J. Phys. Conf. Ser.
,
395
(1), p.
012116
.10.1088/1742-6596/395/1/012116
17.
Om Shankar
,
P.
, and
Rajvanshi
,
A. K.
,
2012
, “
Al2O3–Water Nanofluids in Convective Heat Transfer
,”
Appl. Mech. Mater.
,
110–116
, pp.
3667
3672
.10.4028/www.scientific.net/AMM.110-116.3667
18.
Bayat
,
J.
, and
Nikseresht
,
A. H.
,
2012
, “
Thermal Performance and Pressure Drop Analysis of Nanofluids in Turbulent Forced Convective Flows
,”
Int. J. Therm. Sci.
,
60
, pp.
236
243
.10.1016/j.ijthermalsci.2012.04.012
19.
Abbasian Arani
,
A. A.
, and
Amani
,
J.
,
2012
, “
Experimental Study on the Effect of TiO2–Water Nanofluid on Heat Transfer and Pressure Drop
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
107
115
.10.1016/j.expthermflusci.2012.04.017
20.
Ziaei-Rad
,
M.
,
2013
, “
Numerical Investigation of Pressure Drop and Heat Transfer in Developing Laminar and Turbulent Nanofluid Flows
,”
Phys. Scr.
,
T155
, p.
014021
.10.1088/0031-8949/2013/T155/014021
21.
Saleh
,
R.
,
Putra
,
N.
,
Prakoso
,
S. P.
, and
Septiadi
,
W. N.
,
2013
, “
Experimental Investigation of Thermal Conductivity and Heat Pipe Thermal Performance of ZnO Nanofluids
,”
Int. J. Therm. Sci.
,
63
, pp.
125
132
.10.1016/j.ijthermalsci.2012.07.011
22.
Azmi
,
W. H.
,
Sharma
,
K. V.
,
Sarma
,
P. K.
, and
Septiadi
,
W. N.
,
2013
, “
Experimental Determination of Turbulent Forced Convection Heat Transfer and Friction Factor With SiO2 Nanofluid
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
103
111
.10.1016/j.expthermflusci.2013.07.006
23.
Sahin
,
B.
,
Gultekin
,
G. G.
,
Manay
,
E.
, and
Karagoz
,
S.
,
2013
, “
Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Al2O3–Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
21
28
.10.1016/j.expthermflusci.2013.04.020
24.
Esfe
,
M. H.
,
Saedodin
,
S.
, and
Mahmoodi
,
M.
,
2014
, “
Experimental Studies on the Convective Heat Transfer Performance and Thermophysical Properties of MgO–Water Nanofluid Under Turbulent Flow
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
68
78
.10.1016/j.expthermflusci.2013.08.023
25.
Pouranfard
,
A. R.
,
Mowla
,
D.
, and
Esmaeilzadeh
,
F.
,
2014
, “
An Experimental Study of Drag Reduction by Nanofluids Through Horizontal Pipe Turbulent Flow of a Newtonian Liquid
,”
J. Ind. Eng. Chem.
,
20
(
2
), pp.
633
637
.10.1016/j.jiec.2013.05.026
26.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2014
, “
Forced Convection in a Parallel-Plate Channel Occupied by a Nanofluid or a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
70
, pp.
430
433
.10.1016/j.ijheatmasstransfer.2013.11.016
27.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(4)
, pp.
571
581
.10.1063/1.1700493
28.
Batchelor
,
G. K.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(1)
, pp.
97
117
.10.1017/S0022112077001062
29.
Maxwell
,
J.
,
1904
,
A Treatise on Electricity and Magnetism
, 2nd ed.,
Oxford University Press
,
Cambridge, MA
.
30.
Barthelmes
,
G.
,
Pratsinis
,
S. E.
, and
Buggisch
,
H.
,
2003
, “
Particle Size Distributions and Viscosity of Suspensions Undergoing Shear-Induced Coagulation and Fragmentation
,”
Chem. Eng. Sci.
,
58
(13)
, pp.
2893
2902
.10.1016/S0009-2509(03)00133-7
31.
Friedlander
,
S. K.
,
2000
, “
Smoke, Dust and Haze: Fundamentals of Aerosol Behavior
,”
Wiley
,
New York
.
32.
Saffman
,
P. G.
, and
Turner
,
J. S.
,
1956
, “
On the Collision of Drops in Turbulent Clouds
,”
J. Fluid Mech.
,
1
(1)
, pp.
16
30
.10.1017/S0022112056000020
33.
Spicer
,
P. T.
, and
Pratsinis
,
S. E.
,
1996
, “
Coagulation and Fragmentation: Universal. Steady-State Particle-Size Distribution
,”
AIChE J.
,
42
(
6
), pp.
1612
1620
.10.1002/aic.690420612
34.
Marchisio
,
D. L.
,
Vigil
,
R. D.
, and
Fox
,
R. O.
,
2003
, “
Implementation of the Quadrature Method of Moments in CFD Codes for Aggregation-Breakage Problems
,”
Chem. Eng. Sci.
,
58
(15)
, pp.
3337
3351
.10.1016/S0009-2509(03)00211-2
35.
Yu
,
M. Z.
,
Lin
,
J. Z.
, and
Chan
,
T. L.
,
2008
, “
A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion
,”
Aerosol Sci. Technol.
,
42
(
9
), pp.
705
713
.10.1080/02786820802232972
36.
Yu
,
M. Z.
, and
Lin
,
J. Z.
,
2009
, “
Taylor-Expansion Moment Method for Agglomerate Coagulation due to Brownian Motion in the Entire Size Regime
,”
J. Aerosol Sci.
,
40
(
6
), pp.
549
562
.10.1016/j.jaerosci.2009.03.001
37.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
38.
Dou
,
G. R.
,
1979
, “
Generalized Laws of Turbulent Flow in Open Channels and Pipes for Various Regions
,”
Hydrosci. Eng.
,
1
, pp.
1
12
.
39.
Nikuradse
,
J.
,
1933
, “
Stromungsgesetze in rauhen rohren
,”
Forsch. Arb. Ing.-Wes
,
361
, pp.
1
22
.
40.
Clark
,
J. A.
,
1968
, “
A Study of Incompressible Turbulent Boundary Layers in Channel Flows
,”
ASME J. Fluid Eng.
,
90
(
4
), pp.
455
462
.10.1115/1.3605163
41.
Ding
,
W. L.
, and
Wen
,
D. S.
,
2005
, “
Particle Migration in a Flow of Nanoparticle Suspension
,”
Powder Technol.
,
149
(2–3)
, pp.
84
92
.10.1016/j.powtec.2004.11.012
42.
Lam
,
Y. C.
,
Chen
,
X.
,
Tan
,
K. W.
,
Chai
,
J. C.
, and
Yu
,
S. C. M.
,
2004
, “
Numerical Investigation of Particle Migration in Poiseuille Flow of Composite System
,”
Compos. Sci. Technol.
,
64
(7–8)
, pp.
1001
1010
.10.1016/j.compscitech.2003.08.005
43.
Frank
,
D.
,
Anderson
,
E. R.
, and
Weeks
,
J. F.
,
2003
, “
Particle Migration in Pressure-Driven Flow of Brownian Suspension
,”
J. Fluid Mech.
,
493
, pp.
363
378
.10.1017/S0022112003006001
44.
Kulkarni
,
D. P.
,
Namburu
,
P. K.
,
Bargar
,
H. E.
, and
Das
,
D. K.
,
2008
, “
Convective Heat Transfer and Fluid Dynamic Characteristics of SiO2 Ethylene Glycol/Water Nanofluid
,”
Heat Transfer Eng.
,
29
(
12
), pp.
1027
1035
.10.1080/01457630802243055
45.
Pak
,
B.
, and
Cho
,
Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
46.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2272
2281
.10.1016/j.ijheatmasstransfer.2006.10.024
47.
Abbasian Arani
,
A. A.
, and
Amani
,
J.
,
2013
, “
Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
520
533
.10.1016/j.expthermflusci.2012.08.014
48.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1501
1506
.10.1016/j.applthermaleng.2006.09.028
You do not currently have access to this content.