We performed molecular dynamics (MD) simulations of the interface which is comprised of self-assembled monolayer (SAM) and water solvent to investigate heat transfer characteristics. In particular, local thermal boundary conductance (TBC), which is an inverse of so-called Kapitza resistance, at the SAM–solvent interface was evaluated by using the nonequilibrium MD (NEMD) technique in which the one-dimensional thermal energy flux was imposed across the interface. By using two kinds of SAM terminal with hydrophobic and hydrophilic properties, the local TBCs of these interfaces with water solvent were evaluated, and the result showed a critical difference due to an affinity between SAM and solvent. In order to elucidate the molecular-scale mechanism that makes this difference, microscopic components contributing to thermal energy flux across the interface of hydrophilic SAM and water were evaluated in detail, i.e., the total thermal energy flux is decomposed into the heat transfer modes such as the contribution of molecular transport and that of energy exchange by molecular interactions. These heat transfer modes were also compared with those in the bulk water.

References

References
1.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
, pp.
3
19
.10.1080/01457630600904593
2.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
, pp.
855
864
.10.1016/S0017-9310(01)00175-2
3.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
, pp.
36
44
.10.1016/S1369-7021(05)70936-6
4.
O’Brien
,
P. J.
,
Shenogin
,
S.
,
Liu
,
J.
,
Chow
,
P. K.
,
Laurencin
,
D.
,
Mutin
,
P. H.
,
Masashi Yamaguchi
,
M.
,
Keblinski
,
P.
, and
Ramanath
,
G.
,
2012
, “
Bonding-Induced Thermal Conductance Enhancement at Inorganic Heterointerfaces Using Nanomolecular Monolayers
,”
Nature Mater.
,
12
, pp.
118
122
.10.1038/nmat3465
5.
Kaur
,
S.
,
Raravikar
,
N.
,
Helms
,
B. A.
,
Prasher
,
R.
, and
Ogletree
,
D. F.
,
2014
, “
Enhanced Thermal Transport at Covalently Functionalized Carbon Nanotube Array Interfaces
,”
Nat. Commun.
,
5
.10.1038/ncomms4082
6.
Ulman
,
A.
,
1996
, “
Formation and Structure of Self-Assembled Monolayers
,”
Chem. Rev.
,
96
, pp.
1533
1554
.10.1021/cr9502357
7.
Schreiber
,
F.
,
2000
, “
Structure and Growth of Self-Assembling Monolayers
,”
Prog. Surf. Sci.
,
65
, pp.
151
256
.10.1016/S0079-6816(00)00024-1
8.
Love
,
J. C.
,
Estroff
,
L. A.
,
Kriebel
,
J. K.
,
Nuzzo
,
R. G.
, and
Whitesides
,
G. M.
,
2005
, “
Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology
,”
Chem. Rev.
,
105
, pp.
1103
1169
.10.1021/cr0300789
9.
Dubois
,
L. H.
, and
Nuzzo
,
R. G.
,
1992
, “
Synthesis, Structure, and Properties of Model Organic Surfaces
,”
Annu. Rev. Phys. Chem.
,
43
, pp.
437
463
.10.1146/annurev.pc.43.100192.002253
10.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
, p.
186101
.10.1103/PhysRevLett.96.186101
11.
Shenogina
,
N.
,
Godawat
,
R.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2009
, “
How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces
,”
Phys. Rev. Lett.
,
102
, p.
156101
.10.1103/PhysRevLett.102.156101
12.
Kikugawa
,
G.
,
Ohara
,
T.
,
Kawaguchi
,
T.
,
Torigoe
,
E.
,
Hagiwara
,
Y.
, and
Matsumoto
,
Y.
,
2009
, “
A Molecular Dynamics Study on Heat Transfer Characteristics at the Interfaces of Alkanethiolate Self-Assembled Monolayer and Organic Solvent
,”
J. Chem. Phys.
,
130
, p.
074706
.10.1063/1.3077315
13.
Kuang
,
S.
, and
Gezelter
,
J. D.
,
2011
, “
Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents
,”
J. Phys. Chem. C
,
115
, pp.
22475
22483
.10.1021/jp2073478
14.
Stocker
,
K. M.
, and
Gezelter
,
J. D.
,
2013
, “
Simulations of Heat Conduction at Thiolate-Capped Gold Surfaces: The Role of Chain Length and Solvent Penetration
,”
J. Phys. Chem. C
,
117
, pp.
7605
7612
.10.1021/jp312734f
15.
Harikrishna
,
H.
,
Ducker
,
W. A.
, and
Huxtable
,
S. T.
,
2013
, “
The Influence of Interface Bonding on Thermal Transport Through Solid–Liquid Interfaces
,”
Appl. Phys. Lett.
,
102
, p.
251606
.10.1063/1.4812749
16.
Schoen
,
P. A. E.
,
Michel
,
B.
,
Curioni
,
A.
, and
Poulikakos
,
D.
,
2009
, “
Hydrogen-Bond Enhanced Thermal Energy Transport at Functionalized, Hydrophobic and Hydrophilic Silica–Water Interfaces
,”
Chem. Phys. Lett.
,
476
, pp.
271
276
.10.1016/j.cplett.2009.06.052
17.
Lincoln
,
R. C.
,
Koliwad
,
K. M.
, and
Ghate
,
P. B.
,
1967
, “
Morse-Potential Evaluation of Second- and Third-Order Elastic Constants of Some Cubic Metals
,”
Phys. Rev.
,
157
, pp.
463
466
.10.1103/PhysRev.157.463
18.
Shevade
,
A. V.
,
Zhou
,
J.
,
Zin
,
M. T.
, and
Jiang
,
S.
,
2001
, “
Phase Behavior of Mixed Self-Assembled Monolayers of Alkanethiols on Au(111): A Configurational-Bias Monte Carlo Simulation Study
,”
Langmuir
,
17
, pp.
7566
7572
.10.1021/la0108151
19.
Khare
,
R.
,
Sum
,
A. K.
,
Nath
,
S. K.
, and
de Pablo
,
J. J.
,
2004
, “
Simulation of Vapor-Liquid Phase Equilibria of Primary Alcohols and Alcohol-Alkane Mixtures
,”
J. Phys. Chem. B
,
108
, pp.
10071
10076
.10.1021/jp048144d
20.
Balasubramanian
,
S.
,
Klein
,
M. L.
, and
Siepmann
,
J. I.
,
1995
, “
Monte Carlo Investigations of Hexadecane Films on a Metal Substrate
,”
J. Chem. Phys.
,
103
, pp.
3184
3195
.10.1063/1.470251
21.
Zhang
,
L.
,
Goddard
,
W. A.
, III
, and
Jiang
,
S.
,
2002
, “
Molecular Simulation Study of the c(4 × 2) Superlattice Structure of Alkanethiol Self-Assembled Monolayers on Au(111)
,”
J. Chem. Phys.
,
117
, pp.
7342
7349
.10.1063/1.1507777
22.
Berendsen
,
H. J. C.
,
Grigera
,
J. R.
, and
Straatsma
,
T. P.
,
1987
, “
The Missing Term in Effective Pair Potentials
,”
J. Phys. Chem.
,
91
, pp.
6269
6271
.10.1021/j100308a038
23.
Rappé
,
A. K.
,
Casewit
,
C. J.
,
Goddard
,
W. A.
, III
, and
Skiff
,
W. M.
,
1992
, “
UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations
,”
J. Am. Chem. Soc.
,
114
, pp.
10024
10035
.10.1021/ja00051a040
24.
Essmann
,
U.
,
Perera
,
L.
,
Berkowitz
,
M. L.
,
Darden
,
T.
,
Lee
,
H.
, and
Pedersen
,
L. G.
,
1995
, “
A Smooth Particle Mesh Ewald Method
,”
J. Chem. Phys.
,
103
, pp.
8577
8593
.10.1063/1.470117
25.
Tuckerman
,
M.
,
Berne
,
B. J.
, and
Martyna
,
G. J.
,
1992
, “
Reversible Multiple Time Scale Molecular Dynamics
,”
J. Chem. Phys.
,
97
, pp.
1990
2001
.10.1063/1.463137
26.
Jund
,
P.
, and
Jullien
,
R.
,
1999
, “
Molecular-Dynamics Calculation of the Thermal Conductivity of Vitreous Silica
,”
Phys. Rev. B
,
59
, pp.
13707
13711
.10.1103/PhysRevB.59.13707
27.
Torii
,
D.
,
Nakano
,
T.
, and
Ohara
,
T.
,
2008
, “
Contribution of Inter- and Intramolecular Energy Transfers to Heat Conduction in Liquids
,”
J. Chem. Phys.
,
128
, p.
044504
.10.1063/1.2821963
28.
Howell
,
C.
,
Maul
,
R.
,
Wenzel
,
W.
, and
Koelsch
,
P.
,
2010
, “
Interactions of Hydrophobic and Hydrophilic Self-Assembled Monolayers With Water as Probed by Sum-Frequency-Generation Spectroscopy
,”
Chem. Phys. Lett.
,
494
, pp.
193
197
.10.1016/j.cplett.2010.06.008
29.
Tasić
,
U.
,
Day
,
B. S.
,
Yan
,
T.
,
Morris
,
J. R.
, and
Hase
,
W. L.
,
2008
, “
Chemical Dynamics Study of Intrasurface Hydrogen-Bonding Effects in Gas-Surface Energy Exchange and Accommodation
,”
J. Phys. Chem. C
,
112
, pp.
476
490
.10.1021/jp074586o
You do not currently have access to this content.