A study was conducted to experimentally characterize the pool boiling performance of hydrofluorocarbon HFC-245fa at pressures ranging from 0.15 MPa to 1.1 MPa (reduced pressure range: 0.04–0.31). Pool boiling experiments were conducted using horizontally oriented 1-cm2 heated surfaces to quantify the effects of pressure and a microporous-enhanced coating on heat transfer coefficients and critical heat flux (CHF) values. Results showed that the coating enhanced heat transfer coefficients and CHF by 430% and 50%, respectively. The boiling heat transfer performance of HFC-245fa was then compared with the boiling performance of HFC-134a and hydrofluoroolefin HFO-1234yf.

References

References
1.
Moreno
,
G.
,
Narumanchi
,
S.
, and
King
,
C.
,
2013
, “
Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111014
.10.1115/1.4024622
2.
E.P.A.,
2012
, “
Protection of Stratospheric Ozone: Amendment to the HFO-1234yf SNAP Rule for Motor Vehicle Air Conditioning Sector
,” Federal Register
57
, pp. 17344–17351, Available at https://federalregister.gov/a/2012-6916.
3.
Campbell
,
J. B.
,
Tolbert
,
L. M.
,
Ayers
,
C. W.
,
Ozpineci
,
B.
, and
Lowe
,
K. T.
,
2007
, “
Two-Phase Cooling Method Using the R134a Refrigerant to Cool Power Electronic Devices
,”
IEEE Trans. Ind. Appl.
,
43
(
3
), pp.
648
656
.10.1109/TIA.2007.895719
4.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.10.1016/j.rser.2010.07.006
5.
Angelino
,
G.
, and
Invernizzi
,
C.
,
2003
, “
Experimental Investigation on the Thermal Stability of Some New Zero ODP Refrigerants
,”
Int. J. Refrig.
,
26
(
1
), pp.
51
58
.10.1016/S0140-7007(02)00023-3
6.
Chien
,
L.-H.
, and
Tsai
,
Y.-L.
,
2011
, “
An Experimental Study of Pool Boiling and Falling Film Vaporization on Horizontal Tubes in R-245fa
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4044
4054
.10.1016/j.applthermaleng.2011.08.007
7.
Chen
,
T.
,
2012
, “
Water-Heated Pool Boiling of Different Refrigerants on the Outside Surface of a Horizontal Smooth Tube
,”
ASME J. Heat Transfer
,
134
(
2
), p.
021502
.10.1115/1.4004902
8.
Kedzierski
,
M. A.
,
2006
, “
A Comparison of R245fa Pool Boiling Measurements to R123, R-245fa/Isopentane on a Passively Enhanced, Horizontal Surface
,”
Int. J. Transp. Phenom.
,
8
(
4
), pp.
331
344
.
9.
Agostini
,
B.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels - Part I: Heat Transfer Characteristics of Refrigerant R236fa
,”
Int. J. Heat Mass Transfer
,
51
(
21
), pp.
5400
5414
.10.1016/j.ijheatmasstransfer.2008.03.006
10.
Costa-Patry
,
E.
,
Olivier
,
J.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Two-Phase Flow of Refrigerants in 85 μm-Wide Multi-Microchannels: Part II—Heat Transfer With 35 Local Heaters
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
464
476
.10.1016/j.ijheatfluidflow.2011.01.006
11.
Ong
,
C.
, and
Thome
,
J.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 2-Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
873
886
.10.1016/j.expthermflusci.2010.12.003
12.
Kotthoff
,
S.
,
Gorenflo
,
D.
,
Danger
,
E.
, and
Luke
,
A.
,
2006
, “
Heat Transfer and Bubble Formation in Pool Boiling: Effect of Basic Surface Modifications for Heat Transfer Enhancement
,”
Int. J. Therm. Sci.
,
45
(
3
), pp.
217
236
.10.1016/j.ijthermalsci.2005.01.011
13.
Yang
,
S. W.
,
Jeong
,
J.
, and
Kang
,
Y. T.
,
2008
, “
Experimental Correlation of Pool Boiling Heat Transfer for HFC134a on Enhanced Tubes: Turbo-E
,”
Int. J. Refrig.
,
31
(
1
), pp.
130
137
.10.1016/j.ijrefrig.2007.07.007
14.
van Rooyen
,
E.
, and
Thome
,
J.
,
2012
, “
Pool Boiling Data and Prediction Method for Enhanced Boiling Tubes With R-134a, R236fa and R-1234ze (E)
,”
Int. J. Refrig.
,
36
(
2
), pp.
447
455
.10.1016/j.ijrefrig.2012.11.023
15.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
16.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling CHF Enhancement by a Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.10.1016/S0017-9310(01)00084-9
17.
Furberg
,
R.
, and
Palm
,
B.
,
2011
, “
Boiling Heat Transfer on a Dendritic and Micro-Porous Surface in R134a and FC-72
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3595
3603
.10.1016/j.applthermaleng.2011.07.027
18.
Pialago
,
E. J. T.
,
Kwon
,
O. K.
, and
Park
,
C. W.
,
2013
, “
Nucleate Boiling Heat Transfer of R134a on Cold Sprayed CNT–Cu Composite Coatings
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
112
119
.10.1016/j.applthermaleng.2013.03.046
19.
3M,
2009
, “
3M™ Microporous Metallic Boiling Enhancement Coating (BEC) L-20227
,” 3M. Available at: http://multimedia.3m.com/mws/mediawebserver?mwsId=66666UgxGCuNyXTtNxfXNxfaEVtQEcuZgVs6EVs6E666666--&fn=L20227_6003603.pdf
20.
Dieck
,
R. H.
,
2007
,
Measurement Uncertainty: Methods and Applications
,
ISA
,
Research Triangle Park, NC
.
21.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
,
1982
, “
Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,”
Mem. Fac. Eng., Kyushu Univ.
,
42
(
2
), pp.
95
111
.
22.
Rohsenow
,
W. M.
,
1962
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
84
, pp.
969
975
.
23.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
75
83
.10.1115/1.1527890
24.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.10.1115/1.2759969
25.
Cichelli
,
M. T.
, and
Bonilla
,
C. F.
,
1945
, “
Heat Transfer to Liquids Boiling Under Pressure
,”
Am. Inst. Chem. Eng.
,
41
, pp.
755
787
.
26.
Morozov
,
V. G.
,
1961
, “
An Experimental Study of Critical Heat Loads at Boiling of Organic Liquids on a Submerged Heating Surface
,”
Int. J. Heat Mass Transfer
,
2
(
3
), pp.
252
258
.10.1016/0017-9310(61)90093-X
27.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” UCLA, AEC Report No. AECU-4439.
28.
Lienhard
,
J. H.
,
Dhir
,
V. K.
, and
Riherd
,
D. M.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
477
482
.10.1115/1.3450092
29.
Webb
,
R. L.
, and
Pais
,
C.
,
1992
, “
Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1893
1904
.10.1016/0017-9310(92)90192-U
30.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase Change Phenomena
,
Taylor & Francis
,
Hebron, KY
.
31.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2005
, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2455
2481
.10.1016/j.enconman.2004.11.012
You do not currently have access to this content.