Since the advent of modern electronics technology, heat transfer science and engineering has served in the development of computer technology. The computer as an object of heat transfer research has a unique aspect; it undergoes morphological transitions and diversifications in step with the progress of microelectronics technology. Evolution of computer's hardware manifests itself in increasing packing density of electronic circuits, modularization of circuit assemblies, and increasing hierarchical levels of system internal structures. These features are produced by the confluence of various factors; the primary factors are the pursuit of ever higher processing performance, less spatial occupancy, and higher energy utilization efficiency. The cost constraint on manufacturing also plays a crucial role in the evolution of computer's hardware. Besides, the drive to make computers ubiquitous parts of our society generates diverse computational devices. Concomitant developments in heat generation density and heat transfer paths pose fresh challenges to thermal management. In an introductory part of the paper, I recollect our experiences in the mainframe computers of the 1980s, where the system's morphological transition allowed the adoption of water cooling. Then, generic interpretations of the hardware evolution are attempted, which include recapturing the past experience. Projection of the evolutionary trend points to shrinking space for coolant flow, the process commonly in progress in all classes of computers today. The demand for compact packaging will rise to an extreme level in supercomputers, and present the need to refocus our research on microchannel cooling. Increasing complexity of coolant flow paths in small equipment poses a challenge to a user of computational fluid dynamics (CFD) simulation code. In highly integrated circuits the paths of electric current and heat become coupled, and coupled paths make the electrical/thermal codesign an extremely challenging task. These issues are illustrated using the examples of a consumer product, a printed circuit board (PCB), and a many-core processor chip.

References

References
1.
Moore
,
G.
,
1965
, “
Cramming More Components Onto Integrated Circuits
,”
Electronics Mag.
,
38
(
8
), pp.
114
117
.
2.
Schmidt
,
R.
, and
Iyenger
,
M.
,
2008
, “
Information Technology Energy Usage and Our Planet
,”
Proc. ITHERM 08
, May 28–31, Orlando, FL, pp.
1255
1275
.
3.
Sharma
,
R. K.
,
Bash
,
C. E.
,
Patel
,
C. D.
,
Friedrich
,
R. J.
, and
Chase
,
J. S.
,
2005
, “
Balance of Power: Dynamic Thermal Management for Internet Data Centers
,”
IEEE Internet Comput.
,
9
(
1
), pp.
42
49
.10.1109/MIC.2005.10
4.
Nakayama
,
W.
,
2013
, “
The Heat Transfer Society of Japan, the Fiftieth Anniversary: Retrospect and Prospect
,”
Heat Transfer Eng.
,
24
(
4
), pp.
409
419
.10.1080/01457632.2012.721314
5.
A.
Bar-Cohen
ed.,
Encyclopedia of Thermal Packaging
,
2013
,
World Scientific
,
Singapore
.
6.
Oktay
,
S.
,
Hannemann
,
R.
, and
Bar-Cohen
,
A.
,
1986
, “
High Heat From a Small Package
,”
ASME Mech. Eng.
,
108
(
3
) pp.
36
42
.
7.
Nakayama
,
W.
,
1992
, “
Japanese Supercomputers in Thermal Perspective
,”
High Performance Computing, Research and Practice in Japan
,
R.
Mendez
, ed.,
John Wiley & Sons
, Chichester, UK, pp.
55
73
.
8.
Bergles
,
A.
,
1986
, “
Evolution of Cooling Technology for Electrical, Electronic, and Microelectronic Equipment
,”
Heat Transfer Eng.
,
7
(
3–4
) pp.
97
106
.10.1080/01457638608939648
9.
Nakayama
,
W.
, and
Bergles
,
A. E.
,
1990
, “
Cooling Electronic Equipment; Past, Present, and Future
,”
Heat Transfer in Electronic and Microelectronic Equipment
,
A. E.
Bergles
ed.,
Hemisphere Publishing Corporation
,
New York
, pp.
3
39
.
10.
Kodaka
,
T.
,
Wakai
,
M.
,
Hashimoto
,
T.
,
Ogawa
,
K.
,
Wada
,
K.
, and
Sakamoto
,
M.
,
1985
, “
Processing Scheme of M-680/682H With Enhanced High-Speed Performance by Means of ALU Pipelines and Hierarchical Memories
,”
Nikkei Electronics
, November issue, pp.
228
288
.
11.
Kobayashi
,
F.
,
Watanabe
,
Y.
,
Yamamoto
,
M.
,
Anzai
,
A.
,
Takahashi
,
A.
,
Daikoku
,
T.
, and
Fujita
,
T.
,
1991
, “
Hardware Technology for HITACHI M-880 Processor Group
,”
Proceedings of 41st Electronic Components and Technology Conference
, pp.
693
703
.
12.
Ashiwake
,
N.
,
Daikoku
,
T.
,
Kawamura
,
K.
, and
Zushi
,
S.
,
1991
, “
A Flexible Thermal Contactor for the Cooling of Electronic Components
,”
Proceedings of ASME/JSME Thermal Engineering Joint Conference
, March 17–22, Reno, NV, pp.
357
364
.
13.
Chu
,
R. C.
,
Hwang
,
U. P.
, and
Simons
,
R. E.
,
1982
, “
Conduction Cooling for an LSI Package: A One-Dimensional Approach
,”
IBM J. Res. Develop.
,
26
, pp.
45
54
.10.1147/rd.261.0045
14.
Nakayama
,
W.
,
1986
, “
Thermal Management of Electronic Equipment: A Review of Technology and Research Topics
,”
Appl. Mech. Rev.
,
39
(
12
), pp.
1847
1868
.10.1115/1.3149515
15.
Nakayama
,
W.
,
Matsushima
,
H.
, and
Goel
,
P.
,
1988
, “
Forced Convective Heat Transfer From Arrays of Finned Packages
,”
Cooling Technology for Electronic Equipment
,
W.
Aung
, ed.,
Hemisphere Publishing Corporation
,
New York
, pp.
195
210
.
16.
Nakayama
,
W.
, and
Bergles
,
A. E.
,
2003
, “
Thermal Interfacing Techniques for Electronic Equipment—A Perspective
,”
ASME J. Electron. Packag.
,
125
(
2
), Special Issue in Honor of Dr. M. M. Yovanovich, pp.
192
199
.10.1115/1.1568127
17.
Nakayama
,
W.
,
Nakajima
,
T.
, and
Hirasawa
,
S.
,
1984
, “
Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling of Microelectronic Components
,”
1984 ASME Winter Annual Meeting, New Orleans
, Dec. 9–14, ASME Paper No.84-WA/HT-89.
18.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part I: Experimental Investigation
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
445
450
.10.1115/1.3244320
19.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part II: Analytical Modeling
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
451
456
.10.1115/1.3244321
20.
Nakayama
,
W.
,
Daikoku
,
T.
, and
Nakajima
,
T.
,
1982
, “
Effects of Pore Diameters and System Pressure on Nucleate Boiling Heat Transfer From Porous Surfaces
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
286
291
.10.1115/1.3245085
21.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sink for VLSI
,”
IEEE Electron Device Lett.
,
2
, pp.
126
129
.10.1109/EDL.1981.25367
22.
Keyes
,
R. W.
,
2001
, “
Fundamental Limits of Silicon Technology
,”
Proc. IEEE
,
89
(
3
), pp.
227
239
.10.1109/5.915372
23.
Morris
,
J. E.
, and
Tummala
,
R. R.
,
2001
, “
The Role of Packaging in Microelectronics
,”
Fundamentals of Microsystems Packaging
,
R. R.
Tummala
ed.,
McGraw-Hill
,
New York
, Chapter 2.
24.
Wei
,
J.
,
2008
, “
Challenges in Cooling Design of CPU Packages for High-Performance Servers
,”
Heat Transfer Eng.
,
29
(
2
), pp.
178
187
.10.1080/01457630701686727
25.
Kobayashi
,
F.
,
Watanabe
,
Y.
,
Kasai
,
K.
,
Koide
,
K.
,
Nakanishi
,
K.
, and
Sato
,
R.
,
2000
, “
Hardware Technology for the HITACHI MP5800 Series (HDS Skyline Series)
,”
IEEE Trans. Adv. Packag.
,
23
(
3
), pp.
504
514
.10.1109/6040.861567
26.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W.
,
2000
, “
Thermal Performance of a Combined Effects of Sub-Cooling and Operating Pressure of a Two-Chamber Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
1
) pp.
61
69
.10.1109/6144.833043
27.
Borkar
,
S.
,
2007
, “
Thousand Core Chips—A Technology Perspective
,”
IEEE Design Automation Conference (DAC 2007)
, pp.
746
749
.
28.
Flynn
,
M. J.
, and
Hung
,
P.
,
2005
, “
Microprocessor Design Issues: Thoughts on the Road Ahead
,”
IEEE Micro
,
25
(
3
), pp.
16
31
.10.1109/MM.2005.56
29.
Jisso Technology Roadmap
,
2007
,
Japan Electronic Industry Technology Association
.
30.
Danielson
,
R. D.
,
Krajewski
,
N.
, and
Brost
,
J.
,
1986
, “
Cooling a Superfast Computer
,”
Electronic Packaging and Production
, pp.
44
45
.
31.
Danielson
,
R. D.
,
Tousignant
,
L.
, and
Bar-Cohen
,
A.
,
1987
, “
Saturated Pool Boiling Characteristics of Commercially Available Perfluorinated Liquids
,”
Proceedings of ASME/JSME Thermal Engineering Joint Conference
, Vol.
3
,
ASME
, pp.
419
430
.
32.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
4th
ed.,
John Wiley & Sons
,
New York
, p.
450
.
33.
Leavitt
,
N.
,
2012
, “
Big Iron Moves Toward Exascale Computing
,”
IEEE Comput.
,
45
(
11
), pp.
14
17
.10.1109/MC.2012.363
34.
Kogge
,
P.
,
2011
, “
The Tops in Flops
,”
IEEE Spectrum
,
48
(
2
), p.
44
54
.10.1109/MSPEC.2011.5693074
35.
Koo
,
J-M.
,
Im
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
, pp.
49
58
.10.1115/1.1839582
36.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Cesar
,
W.
,
Leblebici
,
Y.
,
Wunderle
,
B.
, and
Reichl
,
H.
,
2010
, “
Heat-Removal Performance Scaling of Interlayer Cooled Chip Stacks
,”
Proceedings of ITHERM 10
, June 2–5, Las Vegas, NV, pp.
1
12
.
37.
Dang
,
B.
,
Bakir
,
M. S.
,
Sekar
,
D. C.
,
King
,
C. R.
, and
Meindl
,
D.
,
2010
, “
Integrated Microfluidic Cooling and Interconnects for 2D and 3D Chips
,”
IEEE Trans. Adv. Packag.
,
33
(
1
), pp.
79
87
.10.1109/TADVP.2009.2035999
39.
Emma
,
P. G.
, and
Kursun
,
E.
,
2008
, “
Is 3D Chip Technology the Next Growth Engine for Performance Improvement?
,”
IBM J. Res. Dev.
,
52
(
6
), pp.
541
552
.10.1147/JRD.2008.5388561
40.
Kishimoto
,
T.
, and
Ohsaki
,
T.
,
1986
, “
VLSI Packaging Technique Using Liquid-Cooled Channels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
9
(
4
), pp.
328
335
.10.1109/TCHMT.1986.1136661
41.
Ozaktas
,
H. M.
, and
Goodman
,
J. W.
,
1992
, “
Implications of Interconnection Theory for Optical Digital Computing
,”
Appl. Opt.
,
31
(
26
), pp.
5559
5567
.10.1364/AO.31.005559
42.
Ozaktas
,
H. M.
, and
Goodman
,
J. W.
,
1993
, “
Comparison of Local and Global Computation and Its Implications for the Role of Optical Interconnections in Future Nanoelectronic Systems
,”
Opt. Commun.
,
100
(
1–4
), pp.
247
258
.10.1016/0030-4018(93)90587-U
43.
Ozaktas
,
H. M.
,
Oksuzoglu
,
Pease
,
R. F. W.
, and
Goodman
,
J. P.
,
1992
, “
Effect on Scaling of Heat Removal Requirements in Three-Dimensional Systems
,”
Int. J. Electron.
,
73
(
6
), pp.
1227
1232
.10.1080/00207219208925792
44.
Nakayama
,
W.
,
1990
, “
On the Accommodation of Coolant Flow Paths in High-Density Packaging
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
4
), pp.
1040
1049
.10.1109/33.62546
45.
Nakayama
,
W.
,
1994
, “
Information Processing and Heat Transfer Engineering: Some Generic Views on Future Research Needs
,”
Cooling of Electronic Systems
,
S.
Kakac
,
H.
Yuncu
, and
K.
Hijikata
, eds.,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
911
943
.
46.
Nakayama
,
W.
,
1993
, “
How to Sustain the Upswing of FLOPS in Supercomputers in the Future?—Morphological Considerations of Systems
,”
Computers and Computing in Heat Transfer Science and Engineerng
,
W.
Nakayama
and
K. T.
Yang
, ed.,
CRC Press
,
Boca Raton
, FL, pp.
425
443
.
47.
Nakayama
,
W.
,
2013
, “
A Card Stack Model to Elucidate Key Challenges in the Development of Future Generation Supercomputers
,”
IEEE Access
,
1
, pp.
436
448
.10.1109/ACCESS.2013.2272175
48.
Ruch
,
P.
,
Brunschwiler
,
T.
,
Escher
,
W.
,
Paredes
,
S.
, and
Michel
,
B.
,
2011
, “
Toward Five-Dimensional Scaling: How Density Improves Efficiency in Future Computers
,”
IBM J. Res. Dev.
,
55
(
5
), pp.
15:1
15:13
.10.1147/JRD.2011.2165677
49.
Calame
,
J. P.
,
Park
,
D.
,
Bass
,
R.
,
Myers
,
R. E.
, and
Safier
,
P. N.
,
2009
, “
Investigation of Hierarchically Branched-Microchannel Coolers Fabricated by Deep Reactive Ion Etching for Electronic Cooling Applications
,”
ASME J. Heat Transfer
,
131
(
9
), p.
051401
.10.1115/1.3001017
50.
Kim
,
Y.-J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y.-J.
, and
Lim
,
S.-K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Cirucits With Nonuniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041009
.10.1115/1.4000885
51.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
,
I.
, and
Poulikakos
,
D.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121402
.10.1115/1.4002287
52.
Lasance
,
C.
,
2008
, “
Ten Years of Boundary-Condition-Independent Compact Thermal Modeling of Electronic Parts: A Review
,”
Heat Transfer Eng.
,
29
(
2
), pp.
149
168
.10.1080/01457630701673188
53.
Leoni
,
N.
, and
Amon
,
C. H.
,
2000
, “
Bayesian Surrogates for Integrating Numerical, Analytical, and Experimental Data: Application to Inverse Heat Transfer in Wearable Computers
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
1
), pp.
23
32
.10.1109/6144.833038
54.
Joshi
,
Y.
,
2012
, “
Reduced Order Thermal Models of Multiscale Microsystems
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031008
.10.1115/1.4005150
55.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
2012
, “
Computational Heat Transfer in Complex Systems: A Review of Needs and Opportunities
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031016
.10.1115/1.4005153
56.
Aichlmayer
,
H. T.
, and
Kulacki
,
F. A.
,
2006
, “
The Effective Thermal Conductivity of Saturated Porous Media
,”
Advances in Heat Transfer
, Vol.
39
,
Elsevier/Academic Press
,
London
, pp.
377
460
.
57.
Nakayama
,
W.
,
2001
, “
An Approach to Fast Thermal Design of Compact Electronic Systems: A JSME Project
,”
Proceedings of InterPACK
, July, Kauai, HI, ASME Paper No. IPACK2001-15532.
58.
Nakayama
,
W.
,
Matsuki
,
R.
,
Hacho
,
Y.
, and
Yajima
,
K.
,
2004
, “
A New Role of CFD Simulation in Thermal Design of Compact Electronic Equipment: Application of Build-Up Approach to Thermal Analysis of a Benchmark Model
,”
ASME J. Electron. Packag.
,
126
, pp.
440
448
.10.1115/1.1827259
59.
Maguire
,
L.
,
Nakayama
,
W.
,
Behnia
,
M.
, and
Kondo
,
Y.
,
2008
, “
A CFD Study on the Effect of Shrinking Box Size on Cooling Airflows in Compact Electronic Equipment—The Case of a Portable Projection Display Equipment
,”
Heat Transfer Eng.
,
29
(
2
), pp.
188
197
.10.1080/01457630701686735
60.
Nakayama
,
W.
,
2008
, “
Heat Conduction in Printed Circuit Boards: A Mesoscale Modeling Approach
,”
ASME J. Electron. Packag.
,
130
(
4
), p.
041106
.10.1115/1.2993126
61.
1995
, “
Integrated Circuit Test Method, Environment Conditions: Natural Convection (Still Air),” EIA/JEDEC Standard 51-2, Electronic Industries Alliance
.
62.
Nakayama
,
W.
,
Nakajima
,
T.
,
Koike
,
H.
, and
Matsuki
,
R.
,
2007
, “
Heat Conduction in Printed Circuit Boards—Part I; Overview and the Case of a JEDEC Test Board
,”
ASME/Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS, and NEMS (InterPACK ’07)
, July 8–12, Vancouver, British Columbia, Canada, Paper No. IPACK2007-33605.
63.
Nakayama
,
W.
,
Nakajima
,
T.
,
Koike
,
H.
, and
Matsuki
,
R.
,
2007
, “
Heat Conduction in Printed Circuit Boards—Part II; Small PCBs Connected to Large Thermal Mass at Their Edge
,”
ASME/Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS, and NEMS (InterPACK ’07)
, July 8–12, Vancouver, British Columbia, Canada, Paper No. IPACK2007-33606.
64.
Nakayama
,
W.
,
Koizumi
,
K.
,
Fukue
,
T.
,
Ishizuka
,
M.
,
Nakajima
,
T.
,
Koike
,
H.
, and
Matsuki
,
R.
,
2009
, “
Thermal Characterization of High-Density Interconnects In the Form of Equivalent Thermal Conductivity
,”
Proceedings of ASME InterPACK ’09
, July 19–23, 2009, San Francisco, CA, Paper IPACK2009-89086.
65.
Nakayama
,
W.
,
Koizumi
,
K.
,
Fukue
,
T.
,
Ishizuka
,
M.
,
Nakajima
,
T.
,
Koike
,
H.
, and
Matsuki
,
R.
,
2010
, “
Thermal Characterization of High-Density Interconnects: A Methodology Tested on a Model Coupon
,”
ITHERM
10, June 2–5, Las Vegas, NV, Paper No. 2640.
66.
Nakayama
,
W.
,
2013
, “
Heat Conduction in Mobile Electronic Equipment: Study on the Effects of Some Key Parameters on Heat Source Temperature Based on a Three-Layer Model
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
034501
.10.1115/1.4024367
67.
Mahajan
,
R.
,
Chiu
,
C.-P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.10.1109/JPROC.2006.879800
68.
Pedram
,
M.
, and
Nazarian
,
S.
,
2006
, “
Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods
,”
Proc. IEEE
,
94
(
8
), pp.
1487
1501
.10.1109/JPROC.2006.879797
69.
Esmaelizadeh
,
H.
,
Biem
,
E.
,
Amant
,
R. S.
,
Sankaralingam
,
K.
, and
Burger
,
D.
,
2011
, “
Dark Silicon and the End of Multicore Scaling
,”
38th International Symposium on Computer Architecture (ISCA’11)
, pp.
1
12
.
70.
Nakayama
,
W.
,
2013
, “
Study on Heat Conduction in a Simulated Multi-Core Processor Chip: Part I—Analytical Modeling
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021002
.10.1115/1.4023291
71.
Nakayama
,
W.
,
2013
, “
Study on Heat Conduction in a Simulated Multi-Core Processor Chip: Part II—Case Studies
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021003
.10.1115/1.4023292
72.
Rao
,
W.
,
Yang
,
C.
,
Karri
,
R.
, and
Orailogu
,
A.
,
2011
, “
Toward Future Systems With Nanoscale Devices: Overcoming the Reliability Challenge
,”
IEEE Comput.
,
44
(
2
), pp.
46
53
.10.1109/MC.2011.1
You do not currently have access to this content.