Free convection in a vertical channel with antisymmetrical heating is a special case that has not received a great deal of attention in the literature. Antisymmetrical heating is where the hot wall is heated above the ambient temperature by the same amount that the cold wall is cooled below the ambient, giving equal but opposing buoyancy forces inside the channel. An experimental model was constructed to study antisymmetrical heating inside an isothermally heated vertical channel. Flow visualization was used to obtain the flow field and laser interferometry was used to obtain the temperature field. Based on the measured temperature field, the local and average Nusselt numbers were determined, which were compared with numerical predictions obtained using ansys fluent. A range of Rayleigh numbers were studied for air with a Prandtl number of 0.71. The results show that an open-ended channel with antisymmetrical heating has some similarities to a tall enclosure. The average convective heat transfer can be approximated using an existing correlation for a tall enclosure from the literature.

References

References
1.
Aung
,
W.
,
1972
, “
Fully Developed Laminar Free Convection Between Vertical Plates Heated Asymmetrically
,”
Int. J. Heat Mass Transfer
,
15
(
8
), pp.
1577
1580
.10.1016/0017-9310(72)90012-9
2.
Miyatake
,
O.
, and
Fujii
,
T.
,
1973
, “
Natural Convection Heat Transfer Between Vertical Parallel Plates at Unequal Uniform Temperature
,”
Heat Transfer Jpn. Res.
,
2
(
4
), pp.
79
88
.
3.
Aung
,
W.
, and
Worku
,
G.
,
1986
, “
Theory of Fully Developed, Combined Convection Including Flow Reversal
,”
ASME J Heat Transfer
,
108
(
2
), pp.
485
488
.10.1115/1.3246958
4.
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
,
1998
, “
Natural Convection
,”
Handbook of Heat Transfer
,
W. M.
Rohsenow
,
J. P.
Harnett
, and
Y. I.
Cho
, eds.,
McGraw-Hill
,
New York
, pp.
4.32
4.35
.
5.
Kazeminejad
,
H.
,
2005
, “
Laminar Free Convection in a Vertical Channel With Asymmetrical Heating
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
San Francisco
, CA, Vol.
3
, pp.
521
530
.
6.
Elenbaas
,
W.
,
1942
, “
Heat Dissipation of Parallel Plates by Free Convection
,”
Physica
,
9
, pp.
1
28
.10.1016/S0031-8914(42)90053-3
7.
Bodoia
,
J. R.
, and
Osterle
,
J. F.
,
1963
, “
The Development of Free Convection Between Heated Vertical Plates
,”
ASME J Heat Transfer
,
84
(
1
), pp.
40
44
.10.1115/1.3684288
8.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
116
123
.10.1115/1.3246622
9.
Habib
,
H. A.
,
Said
,
S. A. M.
,
Ahmed
,
S. A.
, and
Asghar
,
A.
,
2002
, “
Velocity Characteristics of Turbulent Natural Convection in Symmetrically and Asymmetrically Heated Vertical Channels
,”
Exp. Therm. Fluid Sci.
,
26
(
1
), pp.
77
87
.10.1016/S0894-1777(02)00113-9
10.
Ayinde
,
T. F.
,
Said
,
S. A. M.
, and
Habib
,
M. A.
,
2008
, “
Turbulent Natural Convection Flow in a Vertical Channel With Anti-Symmetric Heating
,”
Heat Mass Transfer
,
44
(
10
), pp.
1207
1216
.10.1007/s00231-007-0359-z
11.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Introduction to Heat Transfer
,
4th ed.
,
John Wiley and Sons
,
New York
, Chap. 9.
12.
ANSYS, Inc.
,
2010
, ansys fluent (Version 13.0), Canonsburg, PA.
13.
The Mathworks, Inc.
,
2010
, matlab (Version R2010a), Natick, MA.
14.
Poulad
,
M. E.
,
Naylor
,
D.
, and
Oosthuizen
,
P. H.
,
2011
, “
Measurement of Time-Averaged Turbulent Free Convection in a Tall Enclosure Using Interferometry
,”
ASME J. Heat Transfer
,
133
(
4
), p.
042501
.10.1115/1.4003081
15.
Slepicka
,
S. S.
, and
Cha
,
S. S.
,
1995
, “
Stabilized Nonlinear Regression for Interferogram Analysis
,”
Appl. Opt.
,
34
(
23
), pp.
5039
5044
.10.1364/AO.34.005039
16.
Naylor
,
D.
,
2003
, “
Recent Developments in the Measurement of Convective Heat Transfer Rates by Laser Interferometry
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
345
355
.10.1016/S0142-727X(03)00021-3
17.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
18.
Touloukian
,
Y. S.
,
Liley
,
P. E.
, and
Saxena
,
S. C.
,
1970
, “
Thermal Conductivity: Nonmetallic Liquids and Gases
,”
Thermophysical Properties of Matter
, Vol.
3
,
Plenum Publishing Corporation
,
New York
.
19.
Touloukian
,
Y. S.
, and
Makita
,
T.
,
1970
, “
Specific Heat: Nonmetallic Liquids and Gases
,”
Thermophysical Properties of Matter
, Vol.
6
,
Plenum Publishing Corporation
,
New York
.
20.
Touloukian
,
Y. S.
,
Saxena
,
S. C.
, and
Hestermans
,
P.
,
1975
, “
Viscosity: Nonmetallic Liquids and Gases
,”
Thermophysical Properties of Matter
, Vol.
11
,
Plenum Publishing Corporation
,
New York
.
21.
Roeleveld
,
D.
,
2013
, “
Experimental and Numerical Study of Free Convection in a Vertical Channel With Opposing Buoyancy Forces
,” Ph.D. thesis, Ryerson University, Toronto.
22.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
23.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
24.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluid Eng.
,
130
(
7
), p.
078001
. 10.1115/1.2960953
25.
Wright
,
J. L.
,
Jin
,
H.
,
Hollands
,
K. G. T.
, and
Naylor
,
D.
,
2006
, “
Flow Visualization of Natural Convection in a Tall, Air-Filled Vertical Cavity
,”
Int. J. Heat Mass Transfer
,
49
(
5-6
), pp.
889
904
.10.1016/j.ijheatmasstransfer.2005.06.045
26.
ElSherbiny
,
S. M.
,
Raithby
,
G. M.
, and
Hollands
,
K. G. T.
,
1982
, “
Heat Transfer by Natural Convection across Vertical and Inclined Air Layers
,”
ASME J. Heat Transfer
,
104
(
1
), pp.
96
102
.10.1115/1.3245075
You do not currently have access to this content.