An exact similarity solution of the steady mixed convection flow of a viscous and incompressible fluid in the vicinity of two-dimensional stagnation-point with a second-order slip condition has been investigated. Using appropriate similarity variable, the Navier–Stokes equations coupled with the energy equation governing the flow and heat transfer are reduced to a system of nonlinear ordinary (similarity) equations, which are well-posed. These equations are solved numerically in the buoyancy assisting and opposing flow regions. It is found that a reverse flow region develops in the buoyancy opposing flow case, and dual (upper and lower branch) solutions are found to exist in the case of opposing flow region for a certain range of the negative values of the mixed convection parameter. A stability analysis has been performed, which shows that the upper branch solutions are stable and physically realizable in practice, while the lower branch solutions are not stable and, therefore, not physically realizable in practice. The numerical results have been compared with those reported in the literature, the agreement being excellent.

References

1.
Himenz
,
K.
,
1911
, “
Die Grenzschicht an einem in den Gleichförmingen Flüssigkeitsstrom eingetauchen geraden Kreiszylinder
,”
Dinglers J.
,
326
, pp.
321
410
.
2.
Homann
,
F.
,
1936
, “
Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel
,”
Z. Angew. Math. Mech.
,
16
, pp.
153
164
.10.1002/zamm.19360160304
3.
Eckert
,
E. R. G.
,
1942
, “
Die Berechnung des Wärmeüberganges in der laminaren Grenzschit umströmter Körper
,” VDI-Forschungsheft 416., VDI, Berlin.
4.
White
,
F.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
Boston
.
5.
Shlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
Springer
,
New York
.
6.
Howarth
,
L.
,
1938
, “
On the Solution of the Laminar Boundary Layer Equations
,”
Proc. R. Soc. London, Ser. A
,
164
, pp.
547
579
.10.1098/rspa.1938.0037
7.
Davey
,
A.
,
1961
, “
Boundary-Layer Flow at a Saddle Point of Attachment
,”
J. Fluid Mech.
,
10
, pp.
593
610
.10.1017/S0022112061000391
8.
Gersten
,
K.
,
Papenfuss
,
H. D.
, and
Gross
,
J. F.
,
1978
, “
Influence of the Prandtl Number on Second-Order Heat Transfer Due to Surface Curvature at a Three Dimensional Stagnation Point
,”
Int. J. Heat Mass Transfer
,
21
, pp.
275
284
.10.1016/0017-9310(78)90120-5
9.
Wang
,
C.-Y.
,
1974
, “
Axisymmetric Stagnation Flow on a Cylinder
,”
Q. Appl. Math.
,
32
, pp.
207
213
.
10.
Kumaran
,
V.
,
Tamizharasi
,
R.
, and
Vajravelu
,
K.
,
2009
, “
Approximate Analytic Solutions of Stagnation Point Flow in a Porous Medium
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
2677
2688
.10.1016/j.cnsns.2008.10.023
11.
Dey
,
J.
, and
Nath
,
G.
,
1981
, “
Mixed Convection Flow on Vertical Surface
,”
Waerme- Stoffuebertrag
,
15
, pp.
279
283
.10.1007/BF01003648
12.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
13.
Cohen
,
C. B.
, and
Reshotko
,
E.
,
1956
, NACA Report No. 1294.
14.
Sparrow
,
E. M.
,
Eichorn
,
R.
, and
Gregg
,
J. L.
,
1959
, “
Combined Forced and Free Convection in a Boundary Layer Flow
,”
Phys. Fluids
,
2
, pp.
319
328
.10.1063/1.1705928
15.
Wilks
,
G.
, and
Bramley
,
J. S.
,
1981
, “
Dual Solutions in Mixed Convection
,”
Proc. R. Soc. Edinburgh
,
87A
, pp.
349
358
.10.1017/S0308210500015262
16.
Merkin
,
J. H.
, and
Mahmood
,
T.
,
1989
, “
Mixed Convection Boundary Layer Similarity Solutions: Prescribed Wall Heat Flux
,”
J. Appl. Math. Phys. (ZAMP)
,
40
, pp.
51
68
.10.1007/BF00945309
17.
Ridha
,
A.
,
1996
, “
Aiding Flows Non-Unique Similarity Solutions of Mixed-Convection Boundary-Layer Equations
,”
J. Appl. Math. Phys.
,
47
, pp.
341
352
.10.1007/BF00916642
18.
Ramachandran
,
N.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Mixed Convection in Stagnation Flows Adjacent to Vertical Surfaces
,”
ASME J. Heat Transfer
,
110
, pp.
373
377
.10.1115/1.3250494
19.
Sharipov
,
F.
, and
Seleznev
,
V.
,
1998
, “
Data on Internal Rarefied Gas Flows
,”
J. Phys. Chem. Ref. Data
,
27
, pp.
657
706
.10.1063/1.556019
20.
Wang
,
C. Y.
,
2003
, “
Flow Over a Surface With Parallel Grooves
,”
Phys. Fluids
,
15
, pp.
1114
1121
.10.1063/1.1560925
21.
Choi
,
C. H.
, and
Kim
,
C. J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered for Superhydrophobic Slip
,”
Phys. Rev. Lett.
,
96
, p.
066001
.10.1103/PhysRevLett.96.066001
22.
Ng
,
C. O.
, and
Wang
,
C. Y.
,
2009
, “
Stokes Shear Flow Over a Grating: Implication for Superhydrophobic Slip
,”
Phys. Fluids
,
21
, p.
013602
.10.1063/1.3068384
23.
Fang
,
T.
,
Yao
,
S.
,
Zhang
,
J.
, and
Aziz
,
A.
,
2010
, “
Viscous Flow Over a Shrinking Sheet With a Second Order Slip Flow Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
1831
1842
.10.1016/j.cnsns.2009.07.017
24.
Wu
,
L.
,
2008
, “
A Slip Model for Rarefied Gas Flows at Arbitrary Knudsen Number
,”
Appl. Phys. Lett.
,
93
, p.
253103
.10.1063/1.3052923
25.
Roşca
,
A. V.
, and
Pop
,
I.
,
2013
, “
Flow and Heat Transfer Over a Vertical Permeable Stretching/Shrinking Sheet With a Second Order Slip
,”
Int. J. Heat Mass Transfer
,
60
, pp.
355
364
.10.1016/j.ijheatmasstransfer.2012.12.028
26.
Pop
,
I.
, and
Ingham
,
D. B.
,
2001
,
Convective Heat Transfer: Mathematical and Computational Viscous Fluids and Porous Media
,
Pergamon
,
Oxford, UK
.
27.
Weidman
,
P. D.
,
Kubitschek
,
D. G.
, and
Davis
,
A. M. J.
,
2006
, “
The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces
,”
Int. J. Eng. Sci.
,
44
, pp.
730
737
.10.1016/j.ijengsci.2006.04.005
28.
Postelnicu
,
A.
, and
Pop
,
I.
,
2011
, “
Falkner-Skan Boundary Layer Flow of a Power-Law Fluid Past a Stretching Wedge
,”
Appl. Math. Comput.
,
217
, pp.
4359
4368
.10.1016/j.amc.2010.09.037
29.
Harris
,
S. D.
,
Ingham
,
D. B.
, and
Pop
,
I.
,
2009
, “
Mixed Convection Boundary-Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium: Brinkman Model With Slip
,”
Transp. Porous Media
,
77
, pp.
267
285
.10.1007/s11242-008-9309-6
30.
Shampine
,
L. F.
,
Reichelt
,
M. W.
, and
Kierzenka
,
J.
,
2010
, “
Solving Boundary Value Problems for Ordinary Differential Equations in Matlab With bvp4c
,” http://www.mathworks.com/bvp_tutorial
31.
Ma
,
P. K. H.
, and
Hui
,
W. H.
,
1990
, “
Similarity Solutions of the Two-Dimensional Unsteady Boundary-Layer Equations
,”
J. Fluid Mech.
,
216
, pp.
537
559
.10.1017/S0022112090000520
You do not currently have access to this content.