An efficient and accurate approach for heat transfer evaluation on curved boundaries is proposed in the thermal lattice Boltzmann equation (TLBE) method. The boundary heat fluxes in the discrete velocity directions of the TLBE model are obtained using the given thermal boundary condition and the temperature distribution functions at the lattice nodes close to the boundary. Integration of the discrete boundary heat fluxes with effective surface areas gives the heat flow rate across the boundary. For lattice models with square or cubic structures and uniform lattice spacing the effective surface area is constant for each discrete heat flux, thus the heat flux integration becomes a summation of all the discrete heat fluxes with constant effective surface area. The proposed heat transfer evaluation scheme does not require a determination of the normal heat flux component or a surface area approximation on the boundary; thus, it is very efficient in curved-boundary simulations. Several numerical tests are conducted to validate the applicability and accuracy of the proposed heat transfer evaluation scheme, including: (i) two-dimensional (2D) steady-state thermal flow in a channel, (ii) one-dimensional (1D) transient heat conduction in an inclined semi-infinite solid, (iii) 2D transient heat conduction inside a circle, (iv) three-dimensional (3D) steady-state thermal flow in a circular pipe, and (v) 2D steady-state natural convection in a square enclosure with a circular cylinder at the center. Comparison between numerical results and analytical solutions in tests (i)–(iv) shows that the heat transfer is second-order accurate for straight boundaries perpendicular to one of the discrete lattice velocity vectors, and first-order accurate for curved boundaries due to the irregularly distributed lattice fractions intersected by the curved boundary. For test (v), the computed surface-averaged Nusselt numbers agree well with published results.

References

1.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
New York
.
2.
Sullivan
,
S. P.
,
Sani
,
F. M.
,
Johns
,
M. L.
, and
Gladden
,
L. F.
,
2005
, “
Simulation of Packed Bed Reactors Using Lattice Boltzmann Methods
,”
Chem. Eng. Sci.
,
60
, pp.
3405
3418
.10.1016/j.ces.2005.01.038
3.
Manjhi
,
N.
,
Verma
,
N.
,
Salem
,
K.
, and
Mewes
,
D.
,
2006
, “
Lattice Boltzmann Modelling of Unsteady-State 2D Concentration Profiles in Adsorption Bed
,”
Chem. Eng. Sci.
,
61
, pp.
2510
2521
.10.1016/j.ces.2005.11.018
4.
Verma
,
N.
,
Salem
,
K.
, and
Mewes
,
D.
,
2007
, “
Simulation of Micro- and Macro-Transport in a Packed Bed of Porous Adsorbents by Lattice Boltzmann Methods
,”
Chem. Eng. Sci.
,
62
, pp.
3685
3698
.10.1016/j.ces.2007.04.005
5.
Verma
,
N.
, and
Mewes
,
D.
,
2008
, “
Simulation of Temperature Fields in a Narrow Tubular Adsorber by Thermal Lattice Boltzmann Methods
,”
Chem. Eng. Sci.
,
63
, pp.
4269
4279
.10.1016/j.ces.2008.05.040
6.
Kao
,
P. H.
,
Ren
,
T. F.
,
Yang
,
R. J.
,
2007
, “
An Investigation Into Fixed-Bed Microreactors Using Lattice Boltzmann Method Simulations
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4243
4255
.10.1016/j.ijheatmasstransfer.2007.02.031
7.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
, pp.
1
50
.10.1615/AnnualRevHeatTransfer.v13.30
8.
Kang
,
Q.
,
Lichtner
,
P. C.
, and
Zhang
,
D.
,
2006
, “
Lattice Boltzmann Pore-Scale Model for Multicomponent Reactive Transport in Porous Media
,”
J. Geophys. Res.
,
111
, p.
B05203
.10.1029/2005JB003951
9.
Kang
,
Q.
,
Lichtner
,
P. C.
, and
Zhang
,
D.
,
2007
, “
An Improved Lattice Boltzmann Model for Multicomponent Reactive Transport in Porous Media at the Pore Scale
,”
Water Resour. Res.
,
43
, p.
W12S14
.10.1029/2006WR005551
10.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
, p.
036702
.10.1103/PhysRevE.75.036702
11.
Chen
,
L.
,
Kang
,
Q.
,
He
,
Y. L.
, and
Tao
,
W. Q.
2012
, “
Pore-Scale Simulation of Coupled Multiple Physicochemical Thermal Processes in Micro Reactor for Hydrogen Production Using Lattice Boltzmann Method
,”
Int. J. Hydrogen Energy
,
37
, pp.
13943
13957
.10.1016/j.ijhydene.2012.07.050
12.
Maier
,
R. S.
, and
Bernard
,
R. S.
,
2010
, “
Lattice-Boltzmann Accuracy in Pore-Scale Flow Simulation
,”
J. Comput. Phys.
,
229
, pp.
233
255
.10.1016/j.jcp.2009.09.013
13.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
329
364
.10.1146/annurev.fluid.30.1.329
14.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford University Press
,
New York
.
15.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L.-S.
, and
Shyy
,
W.
,
2003
, “
Viscous Flow Computations With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
,
39
, pp.
329
367
.10.1016/S0376-0421(03)00003-4
16.
Zheng
,
H. W.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2006
, “
A lattice Boltzmann Model for Multiphase Flows With Large Density Ratio
,”
J. Comput. Phys.
,
218
, pp.
353
371
.10.1016/j.jcp.2006.02.015
17.
Premnath
,
K. N.
, and
Abraham
,
J.
,
2007
, “
Three-Dimensional Multi-Relaxation-Time (MRT) Lattice-Boltzmann Models for Multiphase Flow
,”
J. Comput. Phys.
,
224
, pp.
539
559
.10.1016/j.jcp.2006.10.023
18.
Luo
,
L.-S.
, and
Girimaji
,
S. S.
,
2003
, “
Theory of the Lattice Boltzmann Method: Two-Fluid Model for Binary Mixtures
,”
Phys. Rev. E
,
67
, p.
036302
.10.1103/PhysRevE.67.036302
19.
Asinari
,
P
.,
2008
, “
Asymptotic Analysis of Multiple-Relaxation-Time Lattice Boltzmann Schemes for Mixture Modeling
,”
Comput. Math. Appl.
,
55
, pp.
1392
1407
.10.1016/j.camwa.2007.08.006
20.
Aidun
,
C. K.
, and
Clausen
,
J. R.
,
2010
, “
Lattice-Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
439
472
.10.1146/annurev-fluid-121108-145519
21.
Lätt
,
J.
,
Chopard
,
B.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Numerical Analysis of the Averaged Flow Field in a Turbulent Lattice Boltzmann Simulation
,”
Physica A
,
362
, pp.
6
10
.10.1016/j.physa.2005.09.016
22.
Yu
,
H.
,
Luo
,
L.-S.
, and
Girimaji
,
S. S.
,
2006
, “
LES of Turbulent Square Jet Flow Using an MRT Lattice Boltzmann Model
,”
Comput. Fluids
,
35
, pp.
957
965
.10.1016/j.compfluid.2005.04.009
23.
Guo
,
Z.
,
Zhao
,
T. S.
, and
Shi
,
Y.
,
2006
, “
Physical Symmetry, Spatial Accuracy, and Relaxation Time of the Lattice Boltzmann Equation for Microgas Flows
,”
J. Appl. Phys.
,
99
, p.
074903
.10.1063/1.2185839
24.
Guo
,
Z.
, and
Zhao
,
T. S.
,
2002
, “
Lattice Boltzmann Model for Incompressible Flows Through Porous Media
,”
Phys. Rev. E
,
66
, p.
036304
.10.1103/PhysRevE.66.036304
25.
Pan
,
C.
,
Luo
,
L.-S.
, and
Miller
,
C. T.
,
2006
, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
, pp.
898
909
.10.1016/j.compfluid.2005.03.008
26.
Alexander
,
F. J.
,
Chen
,
S.
, and
Sterling
,
J. D.
,
1993
, “
Lattice Boltzmann Thermohydrodynamics
,”
Phys. Rev. E
,
47
, pp.
R2249
R2252
.10.1103/PhysRevE.47.R2249
27.
Shan
,
X
.,
1997
, “
Solution of Rayleigh-Benard Convection Using a Lattice Boltzmann Method
,”
Phys. Rev. E
,
55
, pp.
2780
2788
.10.1103/PhysRevE.55.2780
28.
Chen
,
Y.
,
Ohashi
,
H.
, and
Akiyama
,
M.
,
1994
, “
Thermal Lattice Bhatnagar-Gross-Krook Model Without Nonlinear Deviations in Macrodynamic Equations
,”
Phys. Rev. E
,
50
, pp.
2776
2783
.10.1103/PhysRevE.50.2776
29.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2003
, “
Theory of the Lattice Boltzmann Method: Acoustic and Thermal Properties in Two and Three Dimensions
,”
Phys. Rev. E
,
68
, p.
036706
.10.1103/PhysRevE.68.036706
30.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
, pp.
282
300
.10.1006/jcph.1998.6057
31.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2007
, “
Thermal Lattice Boltzmann Equation for Low Mach Number Flows: Decoupling Model
,”
Phys. Rev. E
,
75
, p.
036704
.10.1103/PhysRevE.75.036704
32.
Shi
,
B.
, and
Guo
,
Z.
,
2009
, “
Lattice Boltzmann Model for Nonlinear Convection-Diffusion Equations
,”
Phys. Rev. E
,
79
, p.
016701
.10.1103/PhysRevE.79.016701
33.
Mezrhab
,
A.
,
Moussaoui
,
M. A.
,
Jami
,
M.
,
Naji
,
H.
, and
Bouzidi
,
M.
,
2010
, “
Double MRT Thermal Lattice Boltzmann Method for Simulating Convective Flows
,”
Phys. Lett. A
,
374
, pp.
3499
3507
.10.1016/j.physleta.2010.06.059
34.
Yoshida
,
H.
, and
Nagaoka
,
M.
,
2010
, “
Multiple-Relaxation-Time Lattice Boltzmann Model for the Convection and Anisotropic Diffusion Equation
,”
J. Comput. Phys.
,
229
, pp.
7774
7795
.10.1016/j.jcp.2010.06.037
35.
Ginzburg
,
I.
,
2013
, “
Multiple Anisotropic Collisions for Advection-Diffusion Lattice Boltzmann Schemes
,”
Adv. Water Resour.
,
51
, pp.
381
404
.10.1016/j.advwatres.2012.04.013
36.
Soe
,
M.
,
Vahala
,
G.
,
Pavlo
,
P.
,
Vahala
,
L.
, and
Chen
,
H.
,
1998
, “
Thermal Lattice Boltzmann Simulations of Variable Prandtl Number Turbulent Flows
,”
Phys. Rev. E
,
57
, pp.
4227
4237
.10.1103/PhysRevE.57.4227
37.
Vahala
,
L.
,
Wah
,
D.
,
Vahala
,
G.
,
Carter
,
J.
, and
Pavlo
,
P.
,
2000
, “
Thermal Lattice Boltzmann Simulation for Multispecies Fluid Equilibration
,”
Phys. Rev. E
,
62
, pp.
507
516
.10.1103/PhysRevE.62.507
38.
Rong
,
F.
,
Guo
,
Z.
,
Chai
,
Z.
, and
Shi
,
B.
,
2010
, “
A Lattice Boltzmann Model for Axisymmetric Thermal Flows Through Porous Media
,”
Int. J. Heat Mass Transfer
,
53
, pp.
5519
5527
.10.1016/j.ijheatmasstransfer.2010.07.005
39.
Zhao
,
C. Y.
,
Dai
,
L. N.
,
Tang
,
G. H.
,
Qu
,
Z. G.
, and
Li
,
Z. Y.
,
2010
, “
Numerical Study of Natural Convection in Porous Media (Metals) Using Lattice Boltzmann Method (LBM)
,”
Int. J. Heat Fluid Flow
,
31
, pp.
925
934
.10.1016/j.ijheatfluidflow.2010.06.001
40.
d'Humières
,
D.
, and
Lallemand
,
P.
,
1987
, “
Numerical Simulations of Hydrodynamics With Lattice Gas Automata in Two Dimensions
,”
Complex Syst.
,
1
, pp.
599
632
.
41.
Cornubert
,
R.
,
d'Humières
,
D.
, and
Levermore
,
D.
,
1991
, “
A Knudsen Layer Theory for Lattice Gases
,”
Physica D
,
4
, pp.
241
259
.10.1016/0167-2789(91)90295-K
42.
Ziegler
,
D. P.
,
1993
, “
Boundary Conditions for Lattice Boltzmann Simulations
,”
J. Stat. Phys.
,
71
, pp.
1171
1177
.10.1007/BF01049965
43.
Li
,
L.
,
Mei
,
R.
, and
Klausner
,
J. F.
,
2013
, “
Boundary Conditions for Thermal Lattice Boltzmann Equation Method
,”
J. Comput. Phys.
,
237
, pp.
366
395
.10.1016/j.jcp.2012.11.027
44.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results
,”
J. Fluid Mech.
,
271
, pp.
311
339
.10.1017/S0022112094001783
45.
Behrend
,
O
.,
1995
, “
Solid-Fluid Boundaries in Particle Suspension Simulations via the Lattice Boltzmann Method
,”
Phys. Rev. E
,
52
,
1164
1175
.10.1103/PhysRevE.52.1164
46.
Mei
,
R.
,
Yu
,
D.
,
Shyy
,
W.
, and
Luo
,
L.-S.
,
2002
, “
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
,”
Phys. Rev. E
,
65
, p.
041203
.10.1103/PhysRevE.65.041203
47.
Yin
,
X.
,
Le
,
G.
, and
Zhang
,
J.
,
2012
, “
Mass and Momentum Transfer Across Solid-Fluid Boundaries in the Lattice-Boltzmann Method
,”
Phys. Rev. E
,
86
, p.
026701
.10.1103/PhysRevE.86.026701
48.
He
,
X.
, and
Doolen
,
G.
,
1997
, “
Lattice Boltzmann Method on Curvilinear Coordinates System: Flow Around a Circular Cylinder
,”
J. Comput. Phys.
,
134
, pp.
306
315
.10.1006/jcph.1997.5709
49.
Filippova
,
O.
, and
Hänel
,
D.
,
1998
, “
Grid Refinement for Lattice-BGK Models
,”
J. Comput. Phys.
,
147
, pp.
219
228
.10.1006/jcph.1998.6089
50.
Hahn
,
D. W.
, and
Ozisik
,
M. N.
,
2012
,
Heat Conduction
,
John Wiley & Sons
,
New York
.
51.
Shu
,
C.
, and
Zhu
,
Y. D.
,
2002
, “
Efficient Computation of Natural Convection in a Concentric Annulus Between an Outer Square Cylinder and an Inner Circular Cylinder
,”
Int. J. Numer. Methods Fluids
,
38
, pp.
429
445
.10.1002/fld.226
52.
Peng
,
Y.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2003
, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
67
, p.
026701
.10.1103/PhysRevE.67.026701
53.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
51
, pp.
1888
1906
.10.1016/j.ijheatmasstransfer.2007.06.033
54.
Jeong
,
H. K.
,
Yoon
,
H. S.
,
Ha
,
M. Y.
, and
Tsutahara
,
M.
,
2010
, “
An Immersed Boundary-Thermal Lattice Boltzmann Method Using an Equilibrium Internal Energy Density Approach for the Simulation of Flows With Heat Transfer
,”
J. Comput. Phys.
,
229
, pp.
2526
2543
.10.1016/j.jcp.2009.12.002
55.
Moukalled
,
F.
, and
Acharya
,
S.
,
1996
, “
Natural Convection in the Annulus Between Concentric Horizontal Circular and Square Cylinders
,”
J. Thermophys. Heat Transfer
,
10
, pp.
524
531
.10.2514/3.820
56.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
, pp.
6546
6562
.10.1103/PhysRevE.61.6546
57.
Mei
,
R.
,
Luo
,
L.-S.
, and
Shyy
,
W.
,
1999
, “
An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
155
, pp.
307
330
.10.1006/jcph.1999.6334
You do not currently have access to this content.