The effects of Coriolis force and centrifugal buoyancy have a significant impact on heat transfer behavior inside rotating internal serpentine coolant channels for turbine blades. Due to the complexity of added rotation inside such channels, detailed knowledge of the heat transfer will greatly enhance the blade designer's ability to predict hot spots so coolant may be distributed more effectively. The effects of high rotation numbers are investigated on the heat transfer distributions for different rib types in near entrance and entrance region of the channels. It is important to determine the actual enhancement derived from turbulating channel entrances where heat transfer is already high due to entrance effects and boundary layer growth. A transient liquid crystal technique is used to measure detailed heat transfer coefficients (htc) for a rotating, short length, radially outward coolant channel with rib turbulators. Different rib types such as 90 deg, W, and M-shaped ribs are used to roughen the walls to enhance heat transfer. The channel Reynolds number is held constant at 12,000 while the rotation number is increased up to 0.5. Results show that in the near entrance region, the high performance W and M-shaped ribs are just as effective as the simple 90 deg ribs in enhancing heat transfer. The entrance effect in the developing region causes significantly high baseline heat transfer coefficients thus reducing the effective of the ribs to further enhance heat transfer. Rotation causes increase in heat transfer on the trailing side, while the leading side remains relatively constant limiting the decrement in leading side heat transfer. For all rotational cases, the W and M-shaped ribs show significant effect of rotation with large differences between leading and trailing side heat transfer.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton
, FL.
2.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
, pp.
321
330
.10.1115/1.2927879
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to Flow
,”
ASME J. Turbomach.
,
114
, pp.
847
857
.10.1115/1.2928038
4.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to Flow
,”
ASME J. Turbomach.
,
116
, pp.
113
123
.10.1115/1.2928265
5.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Zhang
,
Y.
,
1994
, “
Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 90° Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
37
, pp.
1411
1420
.10.1016/0017-9310(94)90187-2
6.
Zhang
,
Y. M.
,
Han
,
J. C.
,
Parsons
,
J. A.
, and
Lee
,
C. P.
,
1995
, “
Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60 deg Angles Rib Turbulators
,”
ASME J. Turbomach.
,
117
, pp.
272
280
.10.1115/1.2835656
7.
Liou
,
T. M.
,
Chen
,
C. C.
, and
Chen
,
M. Y.
,
2001
, “
TLCT and LDV Measurements of Heat Transfer and Fluid Flow in a Rotating Sharp Turning Duct
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1777
1787
.10.1016/S0017-9310(00)00221-0
8.
Liou
,
T. M.
,
Chen
,
M. Y.
, and
Tsai
,
M. H.
,
2002
, “
Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90-deg Ribs
,”
ASME J. Turbomach.
,
124
, pp.
260
268
.10.1115/1.1459079
9.
Kunstmann
,
S.
,
von Wolfersdorf
,
J.
, and
Ruedel
,
U.
,
2009
, “
Heat Transfer and Pressure Loss in Rectangluar One-Side-Ribbed Channels With Different Aspect Ratios
,” ASME Turbo Expo 2009, Paper No. GT2009-59333.
10.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR=4:1)
,”
ASME J. Turbomach.
,
126
, pp.
604
614
.10.1115/1.1791286
11.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR=2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
, p.
021001
.10.1115/1.4000549
12.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in a Two-Pass Rectangular Channel (AR=1:4) Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
, p.
081701
.10.1115/1.2909615
13.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J. C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR=4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
, pp.
378
387
.10.1115/1.1860564
14.
Lamont
,
J.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
, p.
011002
.10.1115/1.4005604
15.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons
,
Hoboken, NJ
, pp.
283
290
.
16.
Esposito
,
E. I.
,
Ekkad
,
S. V.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2009
, “
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
, p.
021001
.10.1115/1.3202799
17.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermopgraphy Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
, pp.
1
12
.10.1088/0957-0233/11/7/312
18.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
,
1992
, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
ASME J. Turbomach.
,
114
, pp.
765
775
.10.1115/1.2928030
19.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
20.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
,
1997
, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
119
, pp.
381
389
.10.1115/1.2841122
You do not currently have access to this content.